Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{499}{500}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{499}{500}\)
\(1-\frac{1}{x+1}=\frac{499}{500}\)
\(\frac{1}{x+1}=1-\frac{499}{500}=\frac{1}{500}\)
=> x + 1 = 500
=> x = 500 - 1
=> x = 499
Vậy x = 499
1/1.2 + 1/2.3 + 1/3.4 +...+ 1/x.(x+1)=499/500
1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 +...+ 1/x -1/(x+1) =499/500
1-1/(x+1)=499/500
=>x/(x+1)=499/500
=>x=499
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\)\(=\frac{24}{50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x.1}\)=\(\frac{24}{50}\)
=\(\frac{1}{2}-\frac{1}{x.1}=\frac{24}{50}\)
=\(\frac{1}{x.1}=\frac{1}{2}-\frac{24}{50}\)
=\(\frac{1}{x.1}=\frac{1}{50}\)
\(\Rightarrow\)\(x.1=50\)
\(\Rightarrow x=50\)
\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)
\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)
\(2G=3-\frac{1}{3^5}\)
\(2G=3-\frac{1}{243}\)
\(2G=\frac{729}{243}-\frac{1}{243}\)
\(G=\frac{728}{243}:2\)
\(G=\frac{364}{243}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)
\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)
\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)
\(1-\frac{1}{x-1}=\frac{2014}{2015}\)
\(\frac{1}{x-1}=1-\frac{2014}{2015}\)
\(\frac{1}{x-1}=\frac{1}{2015}\)
\(\Rightarrow x-1=2015\)
\(\Rightarrow x=2016\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}\)
\(=\frac{3}{2\times3}-\frac{2}{2\times3}+\frac{4}{3\times4}-\frac{3}{3\times4}+\frac{5}{4\times5}-\frac{4}{4\times5}+\frac{6}{5\times6}-\frac{5}{5\times6}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{2}-\frac{1}{6}\)
\(=\frac{1}{3}\)
\(\frac{1}{2}\times x+\frac{2}{3}=\frac{5}{2}\)
\(\frac{1}{2}\times x=\frac{5}{2}-\frac{2}{3}\)
\(\frac{1}{2}\times x=\frac{11}{6}\)
\(x=\frac{11}{6}\div\frac{1}{2}\)
\(x=\frac{11}{3}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{2}{5}\)
\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{9x10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{8x9}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
=\(1-\frac{1}{9}\)
=\(\frac{8}{9}\)
OK XONG NHỚ CHO MIK NHA
\(\frac{1}{1\times2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+.......+\frac{1}{7x8}+\)\(\frac{1}{8x9}\)
=1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{8}-\frac{1}{9}\)
=1-\(\frac{1}{9}\)
=\(\frac{8}{9}\)
= 29 nhé
Mình ko chắc nhé , nên mình sai đừng k mình sai !
\(\frac{1}{3×4}+\frac{1}{4×5}+...+\frac{1}{x+\left(x+1\right)}=\frac{3}{10}\)
\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3}{10}\)
\(\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)
\(\frac{1}{x+1}=\frac{1}{3}-\frac{3}{10}\)
\(\frac{1}{x+1}=\frac{10}{30}-\frac{9}{30}\)
\(\frac{1}{x+1}=\frac{1}{30}\)
\(\Rightarrow x+1=30\)
\(x=30-1\)
\(x=29\)
Ở đây đề bị lỗi là : 1/x+(x+1) đáng lẽ phải là 1/x.(x+1) thì mới đúng .
hình như là 6666666.6
Ta có:
\(\frac{1}{3.4}.x+\frac{1}{4.5}.x+...+\frac{1}{49.50}.x=1\)
\(\Rightarrow x.\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)=1\)
\(\Rightarrow x.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)
\(\Rightarrow x.\left(\frac{1}{3}-\frac{1}{50}\right)=1\Leftrightarrow x.\frac{47}{150}=1\)
\(\Rightarrow x=1:\frac{47}{150}\Leftrightarrow x=\frac{150}{47}\)