\(\frac{1}{3}\)+ \(\frac{1}{6}\)\(\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\left[x\left(x+1\right)\right]:2}=\frac{1999}{2001}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)

\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)

\(2.\frac{1}{2}-2.\frac{1}{x+1}=\frac{1999}{2001}\)

\(1-\frac{2}{x+1}=\frac{1999}{2001}\)

\(\frac{2}{x+1}=1-\frac{1999}{2001}\)

\(\frac{2}{x+1}=\frac{2}{2001}\)

=> x + 1 = 2001

=> x = 2001 - 1

=> x = 2000

Vậy x = 2000

6 tháng 8 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\left[x\left(x+1\right)\right]:2}=\frac{1999}{2001}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)
\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)

\(2.\frac{1}{2}-2.\frac{1}{x+1}=\frac{1999}{2001}\)

\(1-\frac{2}{x+1}=\frac{1999}{2001}\)

\(\frac{2}{x+1}=1-\frac{1999}{2001}\)

\(\frac{2}{x+1}=\frac{2}{2001}\)

=> x + 1 = 2001

=> x = 2001 - 1

=> x = 2000

Vậy x = 2000

26 tháng 2 2017

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\\ \Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\\ \Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\\ 2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\\ \Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{2015}:2\\ \Rightarrow-\frac{1}{x+1}=\frac{2013}{4030}-\frac{1}{2}\\ \Rightarrow-\frac{1}{x+1}=-\frac{1}{2015}\\ \Rightarrow x=2015\)

Vậy x=2015

26 tháng 2 2017

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\\ \Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\\ \Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\\ 2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\\ \Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{2015}:2\\ \Rightarrow-\frac{1}{x+1}=\frac{2013}{4030}\\ \Rightarrow-\frac{1}{x+1}=-\frac{1}{2015}\\ \Rightarrow x+1=2015\\ \Rightarrow x=2014\)

Vậy x=2014

xin lỗi nhé! vừa nãy mình vội quá nên làm nhầm

16 tháng 5 2016

Đặt A=1/3+1/6+1/10+...+2/x*(x+1)

        1/2A=1/3*2+1/6*2+1/10*2+...+2/2*x*(x+1)

         1/2A=1/6+1/12+1/20+...+1/x*(x+1)

          1/2A=1/2*3+1/3*4+1/4*5+...+1/x*(x+1)

           1/2A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)

           1/2A=1/2-1/x+1

           A=(1/2-1/x+1):1/2

          A=1-2/x+1

Ta có A=1999/2001

Hay 1-2/x+1=1999/2001

           2/x+1=1-1999/2001

          2/x+1=2/2001

=>x+1=2001

=>x=2000

16 tháng 5 2016

Cho A = 1/3+1/6+1/10+...+2/x(x+1)

    1/2A= 1/3.2+1/6.2+1/10.2+...+2/x(x+1)2

    1/2A= 1/6+1/12+1/20+...+1/x(x+1)

    1/2A= 1/2.3+1/3.4+1/4.5+...+1/x(x+1)

    1/2A= 1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1

    1/2A= 1/2-1/x+1

    A      = (1/2-1/x+1)/1/2

    A      = 1-2/x+1

Mà A=1999/2001

=> 1-2/x+1= 1999/2001

         2/x+1= 1-1999/2001

         2/x+1= 2/2001

     =>x+1=2001

     =>x     = 2000

 

26 tháng 12 2017

a) Đặt \(A=\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+.....+\frac{1}{\left(x-2\right)x}+\frac{1}{x\left(x+2\right)}\)

=> \(3A=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+.....+\frac{3}{\left(x-2\right)x}+\frac{3}{x\left(x+2\right)}\)

=> \(3A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{\left(x-2\right)}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+2}\)

=> 3A = \(\frac{1}{5}-\frac{1}{x+2}\)

=> A = \(\frac{1}{15}-\frac{1}{3x+6}\)

Mà : A = \(\frac{101}{1540}\)

=> \(\frac{1}{15}-\frac{1}{3x+6}=\frac{101}{1540}\)

=> \(\frac{1}{3x+6}=\frac{1}{15}-\frac{101}{1540}=\frac{1}{924}\)

=> 3x + 6 = 924

=> 3(x + 2) = 924

=> x + 2 = 308

=> x = 306

26 tháng 12 2017

a) Ta có: \({{1} \over x(x+2)}= {{1} \over 3}({{1} \over x}-{{1} \over x+2})\)  \(\Rightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over 8}+{{1} \over 8}-...+{{1} \over x}-{{1} \over x+2})={{101} \over 1540} \)\(\Leftrightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over x+2})={{101} \over 1540}\)\(\Leftrightarrow\)x+2 = 308 \(\Leftrightarrow\) x=306 Lúc sau lm hơi tắt mọi người thông cảm

26 tháng 6 2017

\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)

\(\frac{3}{2}x-\frac{2}{3}=\frac{4}{9}\)

\(\frac{3}{2}x=\frac{4}{9}+\frac{2}{3}\)

\(\frac{3}{2}x=\frac{10}{9}\)

\(x=\frac{10}{9}:\frac{3}{2}\)

\(x=\frac{20}{27}\)

Vậy x=\(\frac{20}{27}\)

\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=1-\frac{4}{5}\)

\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=\frac{1}{5}\)

\(\frac{9}{11}-x=\frac{1}{5}\cdot\frac{-10}{11}\)

\(\frac{9}{11}-x=\frac{-2}{11}\)

\(x=\frac{9}{11}-\frac{-2}{11}\)

\(x=1\)

Vậy x=1

\(\frac{-11}{12}\cdot x+\frac{3}{4}=\frac{-1}{6}\)

\(\frac{-11}{12}\cdot x=\frac{-1}{6}-\frac{3}{4}\)

\(\frac{-11}{12}\cdot x=\frac{21}{12}\)

\(x=\frac{-21}{11}\)

Vậy x=\(\frac{-21}{11}\)

\(\frac{-5}{4}-\left(1\frac{1}{2}+x\right)=4,5\)

\(\frac{3}{2}+x=\frac{-5}{4}-\frac{9}{2}\)

\(\frac{3}{2}+x=\frac{23}{4}\)

\(x=\frac{17}{4}\)

Vậy x=\(\frac{17}{4}\)

\(\left(\frac{3}{4}-x:\frac{2}{15}\right)\cdot\frac{1}{5}=-2,6\)

\(\frac{3}{4}-x:\frac{2}{15}=\frac{-13}{5}:\frac{1}{5}\)

\(\frac{3}{4}-x:\frac{2}{15}=-13\)

\(x:\frac{2}{15}=\frac{3}{4}-\left(-13\right)\)

\(x:\frac{2}{15}=\frac{45}{4}\)

\(x=\frac{3}{2}\)

Vậy x=\(\frac{3}{2}\)

\(3-\left(\frac{1}{6}-x\right)\cdot\frac{2}{3}=\frac{2}{3}\)

\(3-\left(\frac{1}{6}-x\right)=\frac{2}{3}:\frac{2}{3}\)

\(3-\left(\frac{1}{6}-x\right)=1\)

\(\frac{1}{6}-x=2\)

\(x=\frac{1}{6}-2\)

\(x=\frac{-11}{6}\)

Vậy x=\(\frac{-11}{6}\)

\(\left(1-2x\right)\cdot\frac{4}{5}=\left(-2\right)^3\)

\(1-2x=\frac{-1}{10}\)

\(2x=1-\frac{-1}{10}\)

\(2x=\frac{11}{10}\)

\(x=\frac{11}{20}\)

Vậy x=\(\frac{11}{20}\)

\(\frac{1}{6}-\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{1}{8}\)

\(\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{7}{12}\)

\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{7}{12}\)                                                         \(\frac{1}{2}x-\frac{1}{3}=\frac{-7}{12}\)

\(\frac{1}{2}x=\frac{11}{12}\)                                                                        \(\frac{1}{2}x=\frac{-1}{4}\)

\(x=\frac{11}{6}\)                                                                              \(x=\frac{-1}{2}\)

Vậy \(x\in\left\{\frac{11}{6};\frac{-1}{2}\right\}\)

26 tháng 6 2017

\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)

\(\frac{3}{2}x=\frac{4}{9}+\frac{6}{9}\)

\(\frac{3}{2}x=\frac{10}{9}\)

\(x=\frac{10}{9}:\frac{3}{2}\)

\(x=\frac{20}{27}\)

tk mình đi mình làm nốt cho hjhj ^^

7 tháng 3 2018

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{999}{1000}\)

\(=\frac{1}{1000}\)

chúc

bn

hk

tốt