K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

11 tháng 3 2016

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2}-0+0+...+0-\frac{1}{100}\)

\(\Rightarrow\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)

15 tháng 6 2016

1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/99×100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100

10 tháng 7 2018

a) \(\left(x-25\right):15=20\)

\(\Rightarrow x-25=20\times15\)

\(\Rightarrow x-25=300\)

\(\Rightarrow x=300+25\)

\(\Rightarrow x=325\)

Vậy x = 325

b) \(3\times x-25=80\)

\(\Rightarrow3\times x=80+25\)

\(\Rightarrow3\times x=105\)

\(\Rightarrow x=105:3\)

\(\Rightarrow x=35\)

Vậy x = 35

c) \(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(S=\frac{1}{2}-\frac{1}{100}\)

\(S=\frac{49}{100}\)

Vậy  \(S=\frac{49}{100}\)

_Chúc bạn học tốt_

10 tháng 7 2018

a) (x-25):15=20

x-25=20×15

x-25=300

x=300+25

x=3325

b) 3×x-25=80

3×x=80+25

3×x=105

x=105:3

x=35

S=1/2×3 + 1/3×4 + 1/4×5 + ... + 1/98×99 + 1/99×100

S=1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100

S=1/2-1/100

S=50/100 - 1/100

S=49/100

10 tháng 9 2017

\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)

\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)

\(2G=3-\frac{1}{3^5}\)

\(2G=3-\frac{1}{243}\)

\(2G=\frac{729}{243}-\frac{1}{243}\)

\(G=\frac{728}{243}:2\)

\(G=\frac{364}{243}\)

\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)

\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)

\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)

\(1-\frac{1}{x-1}=\frac{2014}{2015}\)

\(\frac{1}{x-1}=1-\frac{2014}{2015}\)

\(\frac{1}{x-1}=\frac{1}{2015}\)

\(\Rightarrow x-1=2015\)

\(\Rightarrow x=2016\)

5 tháng 6 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{15.16}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{15}-\frac{1}{16}\)

\(=1-\frac{1}{16}=\frac{15}{16}\)

5 tháng 6 2018

\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{15x16}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{15}-\frac{1}{16}\)

\(=1-\frac{1}{16}\)

\(=\frac{15}{16}\)

11 tháng 9 2018

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}\)

\(=\frac{9}{20}\)

11 tháng 9 2018

\(\frac{1}{2x3}\)\(\frac{1}{3x4}\)\(\frac{1}{4x5}\)+ ... + \(\frac{1}{18x19}\)\(\frac{1}{19x20}\)

\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{5}\)+ ... + \(\frac{1}{18}\)\(\frac{1}{19}\)\(\frac{1}{19}\)\(\frac{1}{20}\)

\(\frac{1}{2}\)\(\frac{1}{20}\)

\(\frac{18}{40}\)\(\frac{9}{20}\)

27 tháng 4 2018

=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100

=1/1-1/100

=100/100-1/100

=99/100

27 tháng 4 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{99}{100}\)

~~~
#Sunrise

13 tháng 11 2017

\(D=\frac{3}{3x4}+\frac{3}{4x5}+.....+\frac{3}{99x100}.\)

\(D=3x\left(\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{98x99}+\frac{1}{99x100}\right)\)

\(D=3x\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{100}\right)\)

\(D=3x\left(\frac{1}{3}-\frac{1}{100}\right)\)

\(D=1-\frac{3}{100}\)

\(D=\frac{97}{100}\)

13 tháng 11 2017

\(D=\frac{3}{3x4}+\frac{3}{4x5}+.........+\frac{3}{98x99}+\frac{3}{99x100}\)

\(D=3x\left(\frac{1}{3x4}+\frac{1}{4x5}+...........+\frac{1}{98x99}+\frac{1}{99x100}\right)\)

\(D=3x\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\right)\)

\(D=3x\left(\frac{1}{3}-\frac{1}{100}\right)\)

\(D=\frac{3x97}{100}\)

\(D=\frac{291}{100}\)

26 tháng 6 2017

Bài 3 : 

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+....+\frac{1}{99\times100}\)

Ta có : \(\frac{1}{1\times2}=\frac{2-1}{1\times2}=\frac{2}{1\times2}-\frac{1}{1\times2}=1-\frac{1}{2}\)

           \(\frac{1}{2\times3}=\frac{3-2}{2\times3}=\frac{3}{2\times3}-\frac{2}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

            \(\frac{1}{99\times100}=\frac{100-99}{99\times100}=\frac{100}{99\times100}-\frac{99}{99\times100}=\frac{1}{99}-\frac{1}{100}\)

  \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

\(B=\frac{1}{10\times11}+\frac{1}{11\times12}+...+\frac{1}{38\times39}\)

Ta có : \(\frac{1}{10\times11}=\frac{11-10}{10\times11}=\frac{11}{10\times11}-\frac{10}{10\times11}=\frac{1}{10}-\frac{1}{11}\)

            \(\frac{1}{11\times12}=\frac{12-11}{11\times12}=\frac{12}{11\times12}-\frac{11}{11\times12}=\frac{1}{11}-\frac{1}{12}\)

           \(\frac{1}{38\times39}=\frac{39-38}{38\times39}=\frac{39}{38\times39}-\frac{38}{38\times39}=\frac{1}{38}-\frac{1}{39}\)

           \(\frac{1}{39\times40}=\frac{40-39}{39\times40}=\frac{40}{39\times40}-\frac{39}{39\times40}=\frac{1}{39}-\frac{1}{40}\)

\(\Rightarrow B=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{38}-\frac{1}{39}+\frac{1}{39}-\frac{1}{40}\)

\(B=\frac{1}{10}-\frac{1}{40}\)

\(B=\frac{3}{40}\) 

           

26 tháng 6 2017

3. 

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

\(B=\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{38.39}+\frac{1}{39.40}\)

\(B=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{38}-\frac{1}{39}+\frac{1}{39}-\frac{1}{40}\)

\(B=\frac{1}{10}-\frac{1}{40}\)

\(B=\frac{3}{40}\)