Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo). Viết đề thế này khó đọc lắm.
b, ( 5/2 - x ) ^2
=25/4-4/5x+x^2
c,( xy/2 - x/3 ) ( xy/2 + x/3)
=(xy/2)^2-(x/3)^2
c: \(\left(\dfrac{xy}{2}-\dfrac{x}{3}\right)\left(\dfrac{xy}{2}+\dfrac{x}{3}\right)=\dfrac{x^2y^2}{4}-\dfrac{x^2}{9}\)
e: \(\left(2x+3y\right)^2=4x^2+12xy+9y^2\)
2:
a: \(=\left(2x^2-xy\right)+\left(2xz-yz\right)\)
\(=x\left(2x-y\right)+z\left(x-2y\right)=\left(x-2y\right)\left(x+z\right)\)
b: \(=\left(x^2-4y^2\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-1\right)\)
c: \(=\left(y^2+10y+25\right)-9z^2\)
\(=\left(y+5\right)^2-\left(3z\right)^2\)
\(=\left(y+5+3z\right)\left(y+5-3z\right)\)
d: \(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)
\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)
1:
a: \(x\left(3-4x\right)+5\left(3-4x\right)=\left(3-4x\right)\left(x+5\right)\)
b: \(2y\left(5y-6\right)-4\left(6-5y\right)\)
\(=2y\left(5y-6\right)+4\left(5y-6\right)\)
\(=2\left(5y-6\right)\left(y+2\right)\)
c: \(=27\left(x-2\right)^3-3x\left(x-2\right)^2\)
\(=3\left(x-2\right)^2\cdot\left[9\left(x-2\right)-x\right]\)
\(=3\left(x-2\right)^2\left(8x-18\right)=6\left(x-2\right)^2\cdot\left(4x-9\right)\)
d: \(=6y\left(x-y\right)\left(x+y\right)-8y\left(x+y\right)^2\)
\(=2y\left(x+y\right)\left[3\left(x-y\right)-4\left(x+y\right)\right]\)
\(=2y\left(x+y\right)\left(3x-3y-4x-4y\right)\)
\(=2y\left(x+y\right)\left(-x-7y\right)\)
Bài 1
a) x(3 - 4x) + 5(3 - 4x)
= (3 - 4x)(x + 5)
b) 2y(5y - 6) - 4(6- 5y)
= 2y(5y - 6) + 4(5y - 6)
= (5y - 6)(2y + 4)
= 2(5y - 6)(y + 2)
c) 27(x - 2)³ - 3x(2 - x)²
= 27(x - 2)³ - 3x(x - 2)²
= 3(x - 2)²[9(x - 2) - x]
= 3(x - 2)²(9x - 18 - x)
= 3(x - 2)²(8x - 18)
= 6(x - 2)²(4x - 9)
d) 6y(x² - y²) - 8y(x + y)²
= 6y(x - y)(x + y) - 8y(x + y)²
= 2y(x + y)[3(x - y) - 4(x + y)]
= 2y(x + y)(3x - 3y - 4x - 4y)
= 2y(x + y)(-x - 7y)
= -2y(x + y)(x + 7y)
x+1<x+2<x+3<x+4 ( với mọi x)
\(\dfrac{1}{100}\) < \(\dfrac{1}{99}\)<\(\dfrac{1}{3}\) <\(\dfrac{1}{2}\)
=>\(\dfrac{x+1}{100}\)+\(\dfrac{x+2}{99}\) <\(\dfrac{x+3}{3}\)+\(\dfrac{x+4}{2}\) là đúng
a)
$|3x-2|=2x\Rightarrow x\geq 0$.
Xét 2 TH:
TH1: $x\geq \frac{2}{3}$ thì pt trở thành:
$3x-2=2x\Leftrightarrow x=2$ (thỏa mãn)
TH2: $0\leq x< \frac{2}{3}$ thì pt trở thành:
$2-3x=2x\Leftrightarrow x=\frac{2}{5}$ (thỏa mãn)
b)
PT $\Rightarrow x\geq 0$
$\Rightarrow |4+2x|=4+2x$. PT trở thành:
$4+2x=4x\Leftrightarrow x=2$ (thỏa mãn)
c)
Xét các TH sau:
TH1: $x\geq \frac{3}{2}$. Khi đó, pt trở thành:
$2x-3=-x+21$
$\Leftrightarrow x=8$ (thỏa mãn)
TH2: $x< \frac{3}{2}$. Khi đó, pt trở thành:
$3-2x=-x+21$
$\Leftrightarrow x=-18$ (thỏa mãn)
d)
Từ PT suy ra $x-2\geq 0\Leftrightarrow x\geq 2(*)$
Khi đó: $|3x-1|=3x-1$. PT trở thành:
$3x-1=x-2$
$\Leftrightarrow 2x=-1<0\Rightarrow x<0$ (mâu thuẫn với $(*)$)
Vậy PT vô nghiệm.
`a)|2x+1|=5`
`<=>` \(\left[ \begin{array}{l}2x+1=5\\2x+1=-5\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\)
`b)|2x+1|=0`
`<=>2x+1=0`
`<=>2x=-1`
`<=>x=-1/2`
`c)|2x+1|=7`
`<=>` \(\left[ \begin{array}{l}2x+1=7\\2x+1=-7\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x=6\\2x=-8\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\)
`d)|2x+5|=|3x-7|`
`<=>` \(\left[ \begin{array}{l}2x+5=3x-7\\2x+5=7-3x\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=12\\5x=2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=12\\x=\dfrac25\end{array} \right.\)
`e)|2x+7|=1`
`<=>` \(\left[ \begin{array}{l}2x+7=1\\2x+7=-1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x=-6\\2x=-8\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=3\\x=-4\end{array} \right.\)
`g)|x-2|+|2x-3|=2`
Nếu `x>=2=>|x-2|=x-2,|2x-3|=2x-3`
`pt<=>x-2+2x-3=2`
`<=>3x-5=2`
`<=>3x=7`
`<=>x=7/3(tm)`
Nếu `x<=3/2=>|x-2|=2-x,|2x-3|=3-2x`
`pt<=>2-x+3-2x=2`
`<=>5-3x=2`
`<=>3x=3`
`<=>x=1(tm)`
Nếu `3/2<=x<=2=>|x-2|=2-x,|2x-3|=2x-3`
`pt<=>2-x+2x-3=2`
`<=>x-1=2`
`<=>x=3(l)`
`h)|x+2|+|1-x|=3x+2`
Vì `VT>=0=>3x+2>=0=>x>=-2/3`
`=>|x+2|=x+2`
`pt<=>x+2+|1-x|=3x+2`
`<=>|1-x|=2x(x>=0)`
`<=>` \(\left[ \begin{array}{l}2x=1-x\\2x=x-1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}3x=1\\x=-1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=\dfrac13(TM)\\x=-1(KTM)\end{array} \right.\)
a.
$|2x+1|=5$
\(\Leftrightarrow \left[\begin{matrix}
2x+1=5\\
2x+1=-5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix}
x=2\\
x=-3\end{matrix}\right.\)
b.
$|2x+1|=0$
$\Leftrightarrow 2x+1=0$
$\Leftrightarrow x=-\frac{1}{2}$
c.
$|2x+1|=7$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=7\\ 2x+1=-7\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=3\\ x=-4\end{matrix}\right.\)
Sửa đề: +2023^2-2024^2
C=(1-2)(1+2)+(3-4)(3+4)+...+(2023-2024)(2023+2024)
=-(1+2+3+4+...+2023+2024)
=-2024*2025/2=-2049300
Giả thiết tương đương xy + yz + zx = 0.
Từ đó dễ dàng chứng minh được \(\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3=3xy.yz.zx=3x^2y^2z^2\Leftrightarrow\dfrac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{3x^2y^2z^2}=\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{zx}{y^2}\).