Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = \(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{17x19}\)
2S = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\)\(\frac{1}{17}-\frac{1}{19}\)
2S = \(\frac{1}{3}-\frac{1}{19}\)
2S = \(\frac{16}{57}\)
S = \(\frac{16}{57}\times\frac{1}{2}\)
S = \(\frac{8}{57}\)
\(S=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}+\frac{1}{255}+\frac{1}{323}\)
\(S=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}+\frac{1}{15\cdot17}+\frac{1}{17\cdot19}\)
\(2S=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{15\cdot17}+\frac{2}{17\cdot19}\)
\(2S=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}\)
\(2S=\frac{1}{3}-\frac{1}{19}\)
\(2S=\frac{19}{57}-\frac{3}{57}\)
\(2S=\frac{16}{57}\)
\(S=\frac{16}{57}:2\)
\(S=\frac{16}{57}\cdot\frac{1}{2}\)
\(S=\frac{8}{57}\)
Đặt \(S=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Ta thấy :
\(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
...
\(\frac{1}{399}>\frac{1}{400}\)
\(\Rightarrow S>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)
có 200 dãy \(\Rightarrow S>\frac{200}{400}=\frac{1}{2}\)
Vậy : \(S>\frac{1}{2}\)
Vì \(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
\(\frac{1}{203}>\frac{1}{400}\)
.................
\(\frac{1}{399}>\frac{1}{400}\)
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(199 số hạng \(\frac{1}{400}\))
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(200 số hạng \(\frac{1}{400}\)) = 200.\(\frac{1}{400}\)=\(\frac{1}{2}\)
⇒ A > \(\frac{1}{2}\)
Vậy A > \(\frac{1}{2}\) (ĐPCM)
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\frac{98}{303}\)
\(A=\frac{49}{303}\)
A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
2A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
2A=\(\frac{1}{3}-\frac{1}{101}\)
2A=\(\frac{98}{303}\)
A=\(\frac{98}{303}.\frac{1}{2}\)
A=\(\frac{49}{303}\)
Chúc bạn học tốt!
tìm x : \(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)
\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)
\(\frac{1}{x}=\frac{50}{101}\)
\(x=1:\frac{50}{101}\)
\(x=\frac{101}{50}\)
Vậy \(x=\frac{101}{50}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
- ☹ ☺ ☻ ت ヅ ツ ッ シ Ü ϡ ﭢ
- ✿◕ ‿ ◕✿ ❀◕ ‿ ◕❀ ❁◕ ‿ ◕❁ (◡‿◡✿) (✿◠‿◠)
- ≥^.^≤ (>‿◠)✌ ≧✯◡✯≦✌ ≧◠◡◠≦✌ ≧'◡'≦ =☽
- ≧◔◡◔≦ ≧◉◡◉≦ ≧✯◡✯≦ ≧❂◡❂≦ ≧^◡^≦ ≧°◡°≦
- ^o^^.^ᵔᴥᵔ^^ (°⌣°) ٩(^‿^)۶ ٩(͡๏̮͡๏)۶
- =^.^= (•‿•) (^L^) (>‿♥)
- ♥‿♥◙‿◙ ^( ‘‿’ )^^‿^乂◜◬◝乂
- (▰˘◡˘▰) < (^^,) >».«ಠ_ృ ಥ_ಥ
- v_v►_◄►.◄ >.<ಠ_ರೃ ಠ╭╮ಠ
- מּ_מּಸ_ಸಠ,ಥ໖_໖ Ծ_Ծಠ_ಠ
- ●_● (╥﹏╥)( ´_⊃`) (►.◄)(ு८ு)
- (ಠ_ರೃ)(◕︵◕)*-*^( ‘-’ )^ఠ_ఠ
- ಠ~ಠ ರ_ರ{•̃̾_•̃̾}【•】 _【•】v( ‘.’ )v
- ».« >.< ॓_॔ (-”-) (>.<)\m/(>.<)\m/
- ⊙▃⊙O.o v(ಥ ̯ ಥ)v (ㄒoㄒ) \˚ㄥ˚\
- õ.O (O.O)⊙.◎)๏_๏|˚–˚| ‘Ω’
- ಠoಠ☼.☼ ♥╭╮♥ôヮô◘_◘ਉ_ਉ
- $_$◄.► ~,~ಠ▃ಠತಎತ˚⌇˚
- ॓.॔‹•.•›ಸ_ಸ~_~˘˛˘ ^L^
- 句_句 (°∀°)ヽ (`Д´)ノ ‹(•¿•)›
- (•̪●) (╥╥) (✖╭╮✖) ⊙︿⊙⊙﹏⊙●︿●●﹏●
- {(>_<)} o(╥﹏╥)o(`・ω・´)இ_இ(• ε •)
- (●´ω`●) १|˚–˚|५(>‘o’)>^( ‘-’ )^<(‘o’<)
- @(ᵕ.ᵕ)@(*≗*) (─‿‿─) 凸(¬‿¬)凸
- ¯\(©¿©) /¯ ◤(¬‿¬)◥(∪ ◡ ∪)(*^ -^*)
- (●*∩_∩*●) ◖♪_♪|◗•(⌚_⌚)•!⑈ˆ~ˆ!⑈⋋ō_ō`
- ‹(•¿•)› (\/) (°,,°) (\/)╚(•⌂•)╝(-’๏_๏’-)
- Ƹ̴Ӂ̴Ʒ εїз
- ☺ ☻ ♦ ♣ ♠ ♥ ♂ ♀ ♪ ♫ ☼ ↕ ✿ ⊰ ⊱ ✪ ✣
- ✤ ✥ ✦ ✧ ✩ ✫ ✬ ✭ ✯ ✰ ✱ ✲ ✳ ❃ ❂ ❁ ❀ ✿
- ✶ ✴ ❄ ❉ ❋ ❖ ⊹⊱✿ ✿⊰⊹ ♧ ✿ ♂ ♀ ∞ ☆
- 。◕‿◕。 ☀ ツⓛ ⓞ ⓥ ⓔ ♡ ღ ☼★ ٿ « » ۩ ║ █ ● ♫ ♪
- ☽♐♑♒♓♀♂☝☜ ☂☁☀☾☽☞♐☢☎
- ☮ peace ☮
- ̿' ̿'\̵͇̿̿\з=(•̪●)=ε/̵͇̿̿/'̿'̿ ̿
- ┌∩┐(◣_◢)┌∩┐
1/302 < 1/301; 1/303<1/301; ...; 1/400<1/301
=> A < 1/2 + 1/301+1/301+...+1/301=1/2 + 100/301< 1/2+100/300=1/2+1/3=5/6<1
=> A<1 => đpcm
\(\frac{1}{255}+\frac{1}{323}+...+\frac{1}{9999}\)
=\(\frac{1}{15.17}+\frac{1}{17.19}...+\frac{1}{99.101}\)
=\(\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
=\(\frac{1}{15}-\frac{1}{101}\)
= \(\frac{86}{1515}\)
Xong roài đó bạn
Đặt \(A=\frac{1}{225}+\frac{1}{323}+\frac{1}{399}+....+\frac{1}{9999}\)
\(A=\frac{1}{15.17}+\frac{1}{17.19}+\frac{1}{19.21}+...+\frac{1}{99.101}\)
\(2A=\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=\frac{1}{15}-\frac{1}{101}=\frac{86}{1515}\)
\(\Rightarrow A=\frac{86}{1515}\div2=\frac{43}{1515}\)