K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

\(\frac{1}{255}+\frac{1}{323}+...+\frac{1}{9999}\)

=\(\frac{1}{15.17}+\frac{1}{17.19}...+\frac{1}{99.101}\)

=\(\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

=\(\frac{1}{15}-\frac{1}{101}\)

\(\frac{86}{1515}\)

Xong roài đó bạn

21 tháng 7 2017

Đặt \(A=\frac{1}{225}+\frac{1}{323}+\frac{1}{399}+....+\frac{1}{9999}\)

\(A=\frac{1}{15.17}+\frac{1}{17.19}+\frac{1}{19.21}+...+\frac{1}{99.101}\)

\(2A=\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=\frac{1}{15}-\frac{1}{101}=\frac{86}{1515}\)

\(\Rightarrow A=\frac{86}{1515}\div2=\frac{43}{1515}\)

28 tháng 3 2018

S = \(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{17x19}\)

2S = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\)\(\frac{1}{17}-\frac{1}{19}\)

2S = \(\frac{1}{3}-\frac{1}{19}\)

2S = \(\frac{16}{57}\)

S = \(\frac{16}{57}\times\frac{1}{2}\)

S = \(\frac{8}{57}\)

\(S=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}+\frac{1}{255}+\frac{1}{323}\)

\(S=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}+\frac{1}{15\cdot17}+\frac{1}{17\cdot19}\)

\(2S=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{15\cdot17}+\frac{2}{17\cdot19}\)

\(2S=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}\)

\(2S=\frac{1}{3}-\frac{1}{19}\)

\(2S=\frac{19}{57}-\frac{3}{57}\)

\(2S=\frac{16}{57}\)

\(S=\frac{16}{57}:2\)

\(S=\frac{16}{57}\cdot\frac{1}{2}\)

\(S=\frac{8}{57}\)

27 tháng 4 2019

Đặt \(S=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)

Ta thấy :

\(\frac{1}{201}>\frac{1}{400}\)

\(\frac{1}{202}>\frac{1}{400}\)

...

\(\frac{1}{399}>\frac{1}{400}\)

\(\Rightarrow S>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)

có 200 dãy \(\Rightarrow S>\frac{200}{400}=\frac{1}{2}\)

Vậy : \(S>\frac{1}{2}\)

12 tháng 4 2019

\(\frac{1}{201}>\frac{1}{400}\)

\(\frac{1}{202}>\frac{1}{400}\)

\(\frac{1}{203}>\frac{1}{400}\)

.................

\(\frac{1}{399}>\frac{1}{400}\)

\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(199 số hạng \(\frac{1}{400}\))

\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(200 số hạng \(\frac{1}{400}\)) = 200.\(\frac{1}{400}\)=\(\frac{1}{2}\)

⇒ A > \(\frac{1}{2}\)

Vậy A > \(\frac{1}{2}\) (ĐPCM)

22 tháng 5 2016

\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)

\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)

\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{98}{303}\)

\(A=\frac{49}{303}\)

22 tháng 5 2016

A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

2A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

2A=\(\frac{1}{3}-\frac{1}{101}\)

2A=\(\frac{98}{303}\)

A=\(\frac{98}{303}.\frac{1}{2}\)

A=\(\frac{49}{303}\)

Chúc bạn học tốt!

25 tháng 2 2017

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)

\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)

\(\frac{1}{x}=\frac{50}{101}\)

\(x=1:\frac{50}{101}\)

\(x=\frac{101}{50}\)

Vậy \(x=\frac{101}{50}\)

11 tháng 3 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

31 tháng 3 2017
  1. ☹ ☺ ☻ ت ヅ ツ ッ シ Ü ϡ ﭢ
  2. ✿◕ ‿ ◕✿   ❀◕ ‿ ◕❀   ❁◕ ‿ ◕❁   (◡‿◡✿)   (✿◠‿◠)
  3. ≥^.^≤   (>‿◠)✌   ≧✯◡✯≦✌   ≧◠◡◠≦✌   ≧'◡'≦   =☽  
  4. ≧◔◡◔≦   ≧◉◡◉≦   ≧✯◡✯≦   ≧❂◡❂≦   ≧^◡^≦   ≧°◡°≦
  5. ^o^^.^ᵔᴥᵔ^^ (°⌣°) ٩(^‿^)۶ ٩(͡๏̮͡๏)۶
  6. =^.^= (•‿•) (^L^) (>‿♥)
  7. ♥‿♥◙‿◙ ^( ‘‿’ )^^‿^乂◜◬◝乂
  8. (▰˘◡˘▰) < (^^,) >».«ಠ_ృ ಥ_ಥ
  9. v_v►_◄►.◄ >.<ಠ_ರೃ ಠ╭╮ಠ
  10. מּ_מּಸ_ಸಠ,ಥ໖_໖ Ծ_Ծಠ_ಠ
  11. ●_● (╥﹏╥)( ´_⊃`) (►.◄)(ு८ு)
  12. (ಠ_ರೃ)(◕︵◕)*-*^( ‘-’ )^ఠ_ఠ
  13. ಠ~ಠ ರ_ರ{•̃̾_•̃̾}【•】 _【•】v( ‘.’ )v
  14. ».« >.< ॓_॔ (-”-) (>.<)\m/(>.<)\m/
  15. ⊙▃⊙O.o v(ಥ ̯ ಥ)v (ㄒoㄒ) \˚ㄥ˚\
  16. õ.O (O.O)⊙.◎)๏_๏|˚–˚| ‘Ω’
  17. ಠoಠ☼.☼ ♥╭╮♥ôヮô◘_◘ਉ_ਉ
  18. $_$◄.► ~,~ಠ▃ಠತಎತ˚⌇˚
  19. ॓.॔‹•.•›ಸ_ಸ~_~˘˛˘ ^L^
  20. 句_句 (°∀°)ヽ (`Д´)ノ ‹(•¿•)›
  21. (•̪●) (╥╥) (✖╭╮✖) ⊙︿⊙⊙﹏⊙●︿●●﹏●
  22. {(>_<)} o(╥﹏╥)o(`・ω・´)இ_இ(• ε •)
  23. (●´ω`●) १|˚–˚|५(>‘o’)>^( ‘-’ )^<(‘o’<)
  24. @(ᵕ.ᵕ)@(*≗*) (─‿‿─) 凸(¬‿¬)凸
  25. ¯\(©¿©) /¯ ◤(¬‿¬)◥(∪ ◡ ∪)(*^ -^*)
  26. (●*∩_∩*●) ◖♪_♪|◗•(⌚_⌚)•!⑈ˆ~ˆ!⑈⋋ō_ō`
  27. ‹(•¿•)› (\/) (°,,°) (\/)╚(•⌂•)╝(-’๏_๏’-)
  28. Ƹ̴Ӂ̴Ʒ εїз
  29. ☺ ☻ ♦ ♣ ♠ ♥ ♂ ♀ ♪ ♫ ☼ ↕ ✿ ⊰ ⊱ ✪ ✣
  30. ✤ ✥ ✦ ✧ ✩ ✫ ✬ ✭ ✯ ✰ ✱ ✲ ✳ ❃ ❂ ❁ ❀ ✿
  31. ✶ ✴ ❄ ❉ ❋ ❖ ⊹⊱✿ ✿⊰⊹ ♧ ✿ ♂ ♀ ∞ ☆
  32. 。◕‿◕。 ☀ ツⓛ ⓞ ⓥ ⓔ ♡ ღ ☼★ ٿ « » ۩ ║ █ ● ♫ ♪
  33. ☽♐♑♒♓♀♂☝☜ ☂☁☀☾☽☞♐☢☎
  34. ☮ peace ☮
  35. ̿' ̿'\̵͇̿̿\з=(•̪●)=ε/̵͇̿̿/'̿'̿ ̿
  36. ┌∩┐(◣_◢)┌∩┐
31 tháng 3 2017

1/302 < 1/301; 1/303<1/301; ...; 1/400<1/301

=> A < 1/2 + 1/301+1/301+...+1/301=1/2 + 100/301< 1/2+100/300=1/2+1/3=5/6<1

=> A<1 => đpcm