K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2016

A=1/1.2.3 + 1/2.3.4 + ...  + 1/23.24.25

2A=2/1.2.3 + 2/2.3.4 + ...  + 2/23.24.25

=1/1.2 - 1/2.3 + 1/2.3 -1/3.4 + .... + 1/23.24 - 1/24.25 

=1/1.2 - 1/24.25

Tớ chỉ giải đến đó thôi còn lại các  bạn cứ bấm máy tính là ra

22 tháng 4 2016

Bài toán trên áp dụng bài toán tổng quát sau:

\(\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}=\frac{2}{n.\left(n+1\right).\left(n+2\right)}\)

Suy ra 

\(\frac{1}{n.\left(n+1\right).\left(n+2\right)}=\left(\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\right).\frac{1}{2}\)

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{23.24.25}\)

\(=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right).\frac{1}{2}\)

\(=\left(\frac{1}{1.2}-\frac{1}{24.25}\right).\frac{1}{2}\)

\(=\frac{299}{1200}\)

26 tháng 9 2015

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right).n.\left(n+1\right)}+...+\frac{1}{23.24.25}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{24.25}\right)=\frac{299}{1200}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{23.24.25}\right)=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{600}\right)=\frac{1}{2}.\frac{299}{600}=\frac{299}{1200}\)

24 tháng 11 2018

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{23.24.25}\)

\(S=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)

\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{24.25}\right)\)

\(S=\frac{1}{4}-\frac{1}{24.50}\)

24 tháng 11 2018

Dễ thấy với mọi số tự nhiên n > 1 , ta có :

\(\frac{2}{\left(n-1\right).n.\left(n+1\right)}=\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right).n.\left(n+1\right)}=\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}\)

Sử dụng  hệ thức trên cho từng số hạng trong tổng sau :

\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{\left(n-1\right).n.\left(n+1\right)}+\frac{2}{23.24.25}\)

     \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}+...+\frac{1}{23.24}-\frac{1}{24.25}\)

Để ý rằng trong vế phải của hệ thức trên , trừ 2 số hạng đầu và cuối , các số hạng còn lại tạo thành từng cặp đối nhau.

Do đó , có thể rút gọn : 

\(2S=\frac{1}{1.2}-\frac{2}{24.25}=\frac{299}{600}\)

Vậy , ta được \(S=\frac{299}{600}\)

3 tháng 5 2017

x = 9/11

4 tháng 5 2017

(x=9/11)có đúng không????

12 tháng 10 2019

\(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{8\cdot9\cdot10}\right)x=\frac{22}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{8\cdot9\cdot10}\right)x=\frac{22}{45}\)

\(\Rightarrow\frac{x}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\right)=\frac{22}{45}\)

\(\Rightarrow\frac{x}{2}\left(\frac{1}{2}-\frac{1}{90}\right)=\frac{22}{45}\)

\(\Rightarrow\frac{x}{2}\cdot\frac{22}{45}=\frac{22}{45}\)

\(\Rightarrow\frac{x}{2}=1\)

\(\Rightarrow x=2\)

9 tháng 6 2019

\(2D=\frac{2}{1.2.3}+\frac{2}{2.3.4}+..+\frac{2}{23.24.25}\)

\(2D=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-.....-\frac{1}{24.25}=\frac{1}{2}-\frac{1}{600}=\frac{299}{600}\Rightarrow D=\frac{299}{1200}\)

25 tháng 3 2016

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)

\(\Rightarrow x=2\)

28 tháng 4 2019

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(A=\frac{1}{2}.\frac{370}{741}\)

\(A=\frac{185}{741}\)

28 tháng 4 2019

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

Tự tính tiếp nha =)) mỏi tay quá