\(x\) such that \(x^2-x-6=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

\(x^2-x-6=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(2x-6\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)

28 tháng 6 2017

x^2 - x - 6 = 0

x^2 - 2x + 3x - 6 = 0

(x^2-2x) + (3x-6) = 0

x(x-2) + 3(x-2) = 0

(x-2).(x+3) = 0

\(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)

\(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

23 tháng 10 2016

Ta có : \(\hept{\begin{cases}x+y-xy=55\\x^2+y^2=325\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2\left(x+y\right)-2xy=110\left(1\right)\\\left(x+y\right)^2-2xy=325\left(2\right)\end{cases}}\)

Lấy (2) trừ (1) theo vế : \(\left(x+y\right)^2-2\left(x+y\right)=215\)

Đặt \(t=x+y\) thì ta có pt : \(t^2-2t-215=0\Leftrightarrow\orbr{\begin{cases}t=1+6\sqrt{6}\\t=1-6\sqrt{6}\end{cases}}\)

1. Nếu \(t=1+6\sqrt{6}\) thì thay vào (1) ta được \(\hept{\begin{cases}x+y=1+6\sqrt{6}\\xy=-54+6\sqrt{6}\end{cases}}\)

Tới đây ta được hệ phương trình đối xứng loại I , bạn tự giải.

2. Nếu \(t=1-6\sqrt{6}\) thì thay vào (1) được \(\hept{\begin{cases}x+y=1-6\sqrt{6}\\xy=-54-6\sqrt{6}\end{cases}}\) 

Ta cũng được hệ pt đối xứng loại I.

23 tháng 10 2016

hi tui khong biet tui moi hoc lop 7 thui !

31 tháng 10 2016

Ta có

\(\hept{\begin{cases}x+y-xy=55\\x^2+y^2=325\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x+y\right)-2xy=110\\\left(x+y\right)^2-2xy=325\end{cases}}\)

Lấy dưới trừ trên vế theo vế ta được

(x + y)2 - 2(x + y) = 215

\(\Leftrightarrow\orbr{\begin{cases}x+y=1+6\sqrt{6}\\x+y=1-6\sqrt{6}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}xy=6\sqrt{6}-54\\xy=-6\sqrt{6}-54\end{cases}}\)

Ta lại có

31 tháng 10 2016

Ta lại có 

x3 - y3 = (x - y)(x2 + xy + y2) = 

\(\sqrt{\left(x+y\right)^2-4xy}\left(x^2+xy+y^2\right)\)

Giờ chỉ việc thế số vô là có đáp án nhé

NV
26 tháng 2 2020

1. \(x^2\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\Rightarrow x=-1\)

2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).7x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

NV
26 tháng 2 2020

3.

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

4.

\(x^2-x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

NV
22 tháng 7 2020

\(x\ne\pm3\)

\(P=\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{11x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x^2+x-6}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x-3\right)}\)

\(=\frac{x-2}{x-3}=1+\frac{1}{x-3}\)

P is an integer if and only if 1 is divisible by \(x-3\)

Therefore \(x-3=\left\{-1;1\right\}\Rightarrow x=\left\{2;4\right\}\)

\(\Rightarrow x_{min}=2\)

2 tháng 7 2017

\(a,x^4+2x^3+x^2=\left(x^2+x\right)^2\)

\(b,x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)\)\(=\left(x-1\right)\left(x+6\right)\)

\(c,5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)\(x^4+8x=x\left(x^3+8\right)=x\left(x+2\right)\left(x^2-2x+4\right)\) \(e,x^2+x-6=x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)=\left(x-2\right)\left(x+3\right)\)\(f,x^2-2x-3=x^2-3x+x-3=x\left(x-3\right)+\left(x-3\right)=\left(x+1\right)\left(x-3\right)\)\(h,2x^2+5x-3=0\Leftrightarrow2x^2-6x+x-3=0\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

27 tháng 8 2017

\(a,\)\(x^4-4x^3+4x^2=0\)

\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)

\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b,\)\(x^2+5x+4=0\)

\(\Leftrightarrow x^2+x+4x+4=0\)

\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

\(c,\)\(9x-6x^2-3=0\)

\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow2x^2-2x-x+1=0\)

\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

\(d,\)\(2x^2+5x+2=0\)

\(\Leftrightarrow2x^2+4x+x+2=0\)

\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)