\(\frac{3}{\sqrt{1+a}}\)+\(\sqrt{1+a}\)): (
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

F = [3/(√1 + a) + (√1 - a)] : [3/(√1 - a^2) + 1] .

=[3+√1-a^2)/√1+a]:[(3+√1-a^2/√1-a^2] 

=(3+√1-a^2/√1+a].[√1-a^2/(3+√1-a^2]

=√1-a.√1+a/√1+a=√1-a

thay a=√3/(2+√3) vào F ta được

√[1-(√3/(2+√3)]=√2/(2+√3)

=√2/(2+√3)=(√4-2√3)/4-3=√(√3-1)^2=|√3-1}

=√3-1

DD
30 tháng 9 2021

Khi \(x=1,44\)\(A=\frac{1,44+7}{\sqrt{1,44}}=\frac{8,44}{1,2}=\frac{211}{30}\)

\(B=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-1}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\)(ĐK: \(x\ge0,x\ne9\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2x-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x-3\sqrt{x}+2x+5\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(S=\frac{1}{B}+A=\frac{\sqrt{x}-3}{\sqrt{x}}+\frac{x+7}{\sqrt{x}}=\frac{x+\sqrt{x}+4}{\sqrt{x}}=\sqrt{x}+\frac{4}{\sqrt{x}}+1\)

\(\ge2\sqrt{\sqrt{x}.\frac{4}{\sqrt{x}}}+1=5\)

Dấu \(=\)khi \(\sqrt{x}=\frac{4}{\sqrt{x}}\Leftrightarrow x=4\)(thỏa mãn) 

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
18 tháng 8 2016

a/ Với x = \(23-12\sqrt{3}\) ta có:

\(x-11=23-12\sqrt{3}-11=12-12\sqrt{3}=12\left(1-\sqrt{3}\right)\) 

\(\sqrt{x-2}-3=\sqrt{23-12\sqrt{3}-2}-3=\sqrt{21-12\sqrt{3}}-3=\sqrt{3^2-2.3.2\sqrt{3}+\left(2\sqrt{3}\right)^2}-3=\sqrt{\left(3-2\sqrt{3}\right)^2}-3=2\sqrt{3}-6\)                        \(=2\sqrt{3}\left(1-\sqrt{3}\right)\)

=>\(\frac{x-11}{\sqrt{x-2}-3}=\frac{12\left(1-\sqrt{3}\right)}{2\sqrt{3}\left(1-\sqrt{3}\right)}=\frac{12}{2\sqrt{3}}=\frac{2\sqrt{3}.2\sqrt{3}}{2\sqrt{3}}=2\sqrt{3}\)

18 tháng 8 2016

b/ \(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}=\frac{1-\sqrt{a}}{2\left(1-a\right)}+\frac{1+\sqrt{a}}{2\left(1-a\right)}-\frac{a^2+2}{\left(1-a\right)\left(1-a+a^2\right)}\)

=\(\frac{2}{2\left(1-a\right)}-\frac{a^2+2}{\left(1-a\right)\left(1-a+a^2\right)}=\frac{1-a+a^2-a^2-2}{\left(1-a\right)\left(1-a+a^2\right)}=\frac{-a-1}{1-a^3}\)

Thay : \(a=\sqrt{2}tacó:\)

\(\frac{-\sqrt{2}-1}{1-\sqrt{2}^3}=\frac{-\left(1+\sqrt{2}\right)}{1-2\sqrt{2}}\)

6 tháng 9 2021

a, Ta có: \(x=4-2\sqrt{3}\)\(=3-2\sqrt{3}+1\)\(=\left(\sqrt{3}-1\right)^2\)

         \(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}\)\(=\sqrt{3}-1\)

Thay \(\sqrt{x}=\sqrt{3}-1\) vào biểu thức P ta có:

\(P=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-4}\)\(=\frac{\sqrt{3}}{\sqrt{3}-5}\)\(=\frac{\sqrt{3}.\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right).\left(\sqrt{3}+5\right)}\)\(=\frac{3-5\sqrt{3}}{3-25}\)\(=\frac{5\sqrt{3}-3}{22}\)

Vậy \(P=\frac{5\sqrt{3}-3}{22}\)khi \(x=4-2\sqrt{3}\) 

b, \(E=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}\)\(=\frac{\sqrt{3}+1}{\left(\sqrt{3}-1\right).\left(\sqrt{3}+1\right)}\)\(-\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right).\left(\sqrt{3}-1\right)}\)

       \(=\frac{\sqrt{3}+1-\sqrt{3}+1}{3-1}\)     \(=\frac{2}{2}=1\)

6 tháng 9 2021

a, Ta có : \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

Thay vào P ta được : \(P=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-4}=\frac{\sqrt{3}}{\sqrt{3}-5}=\frac{\sqrt{3}\left(\sqrt{3}+5\right)}{-22}=-\frac{3+5\sqrt{3}}{22}\)

b, \(E=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}=\frac{\sqrt{3}+1-\sqrt{3}+1}{2}=1\)