K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : 642 + 128.36 + 362

= 642 + 2.64.36 + 362

= (64 + 36)2

= 1002 

= 10000

 Đúng 0  Báo cáo sai phạm

21 tháng 6 2017

Ta có : 642 + 128.36 + 362

= 642 + 2.64.36 + 362

= (64 + 36)2

= 1002 

= 10000

21 tháng 6 2017

mik ko chép lại đề bài nha

a) = (123)2- 12- (36. 46)

    = (126-1)- (3.4)6

     = 126-1-126

    = -1

17 tháng 8 2020

a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)

b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)

\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)

c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)

d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)

e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)

= 31

f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)

17 tháng 8 2020

a, \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x\)

Thay x = 3 vào biểu thức trên ta cs : \(-3^2-3.3=-9-9=-18\)

b, \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2\)

Thay x = 4 ; y = 5 vào biểu thức trên ta có : \(3.4^2-\frac{12}{5}.5^2=-12\)

31 tháng 10 2020

a) Đặt: x = a- b; y = b - c ; z = c- a 

Ta có: x + y + z = 0 

=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)

=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

b) Đặt: \(a=x^2-2x\) 

Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)

d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)

Đặt: \(x^2-8=t\)

Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)

\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)

\(=\left(2x^2+9x-16\right)^2\)

Ta có: \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot...\cdot\left(3^{64}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\cdot...\cdot\left(3^{64}+1\right)}{2}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)}{2}\)

\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)}{2}\)

\(=\dfrac{\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)}{2}\)

\(=\dfrac{\left(3^{64}-1\right)\left(3^{64}+1\right)}{2}\)

\(=\dfrac{3^{128}-1}{2}\)

Phong Thần

bạn để ý quan hệ giữa các phần tử trong ngoặc
*thực ra toi nhân ngẫu nhiên số 2 vào nếu ko đẹp thì sẽ là nhân 4

19 tháng 10 2020

a) Ta có F = \(\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)

=> 8F = \(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^8-1\right)\left(3^8+1\right)-3^{16}=3^{16}-1-3^{16}=-1\)

=> F = -1/8

b) Ta có G = \(\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)-\frac{2^{24}}{7}\)

=> 7G = 7(23 + 1)(26 + 1)(212 + 1) - 224

=> 7G = (23 - 1)(23 + 1)(26 + 1)(212 + 1) - 224

=> 7G = (26 - 1)(26 + 1)(212 + 1) - 224

=> 7G = (212 - 1)(212 + 1) - 224

=> 7G = 224 - 1 - 224

=> 7G = -1

=>  G = -1/7

19 tháng 10 2020

\(F=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)

<=> \(\left(3^2-1\right)F=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\left(3^2-1\right)\frac{3^{16}}{8}\)

<=> \(8F=\left(3^4-1\right)\left(3^4+1\right)\left(3^8-1\right)-3^{16}\)

<=> \(8F=\left(3^8+1\right)\left(3^8-1\right)-3^{16}\)

<=> \(8F=\left(3^{16}-1\right)-3^{16}=-1\)

<=> F = -1/8

Câu G làm tương tự

15 tháng 9 2018

\(\left(x+2\right)^3-\left(x+6\right)\left(x^2+12\right)+64\)

\(=x^3+6x^2+12x+8-x^3-12x-6x^2-72+64\)

\(=\left(x^3-x^3\right)+\left(6x^2-6x^2\right)+\left(12x-12x\right)+8-72+64\)

\(=0\)

Vậy biểu thức trên không phụ thuộc vào giá trị của biến 

15 tháng 9 2018

(x+2)3-(x+6)(x2+12)+64

=(x3+6x2+12x+8)-(x3+6x2+12x+72)+64

=8-72+64=0

=>Giá trị của biểu thức trên không phụ thuộc vào biến

 NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ

1. (A+B)2 = A2+2AB+B2

2. (A – B)2= A2 – 2AB+ B2

3. A– B2= (A-B)(A+B)

4. (A+B)3= A3+3A2B +3AB2+B3

5. (A – B)3 = A3- 3A2B+ 3AB2- B3

6. A+ B3= (A+B)(A2- AB +B2)

7. A3- B3= (A- B)(A2+ AB+ B2)

8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC

4 tháng 7 2021

a)\(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x=0\)

Vậy g/t P không phụ thuộc vào biến.

b)\(Q=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)=-6x^2-2+6x^2-6=-8\)

Vậy g/t Q không phụ thuộc vào biến.

b) Ta có: \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)

\(=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6\left(x^2-1\right)\)

\(=-2\left(3x^2+1\right)+6\left(x^2-1\right)\)

\(=-6x^2-2+6x^2-6\)

=-8