K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 8 2020

Giả sử biểu thức xác định

\(E=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}\)

4 tháng 10 2019

f)\(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}\)

\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}.\left(\sqrt{x}-\sqrt{y}\right)\)

\(=x-y\)

4 tháng 10 2019

b)\(\sqrt{11-4\sqrt{7}}-\sqrt{2}.\sqrt{8+3\sqrt{7}}\)

\(=\sqrt{7-4\sqrt{7}+4}-\sqrt{16+6\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\sqrt{9+6\sqrt{7}+7}\)

\(=\sqrt{7}-2-\sqrt{\left(3+\sqrt{7}\right)^2}\)(vì \(\sqrt{7}>2\))

\(=\sqrt{7}-2-3-\sqrt{7}=-5\)

1 tháng 2 2016

\(x+\sqrt{xy}=3\sqrt{xy}+15y\Leftrightarrow x-2\sqrt{xy}+y=16y\Leftrightarrow\sqrt{x}=\sqrt{y}+4\sqrt{y}=5\sqrt{y}\Leftrightarrow x=25y\)

\(E=\frac{50y+5y+3y}{25y+5y-y}=\frac{58}{29}=2\)

 

31 tháng 1 2016

Bài toán hay đấy

25 tháng 8 2021

2k6 thì dạng này EZ quá còn gì:)

\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)

\(\Leftrightarrow x+\sqrt{xy}-3\sqrt{xy}-15y=0\)

\(\Leftrightarrow x-2\sqrt{xy}-15y=0\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-5\sqrt{y}=0\\\sqrt{x}+3\sqrt{y}=0\end{cases}}\Leftrightarrow\sqrt{x}=5\sqrt{y}\Leftrightarrow x=25y\)

Khi đó : \(E=\frac{2x+\sqrt{xy}+3y}{x+\sqrt{xy}-y}=\frac{50y+5y+3y}{25y+5y-y}=\frac{58y}{29y}=2\)

(3*x-1)*y+2*căn bậc hai(x)*y+2*x