\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.........+\frac{1}{86.87.88}\)

Ai tìm ra cấu tr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

Từ giả thiết suy ra:

2E=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+..+\frac{2}{86.87.88}\)

2E=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{86.87}+\frac{1}{87.88}\)

2E=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{86}-\frac{1}{87}+\frac{1}{87}-\frac{1}{88}\)

2E=\(1-\frac{1}{88}\)

2E=\(\frac{87}{88}\)

E=\(\frac{87}{176}\)

Vậy E=\(\frac{87}{176}\)

9 tháng 10 2020

e. \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}+\frac{1}{5}-\frac{1}{45}=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}=\frac{7}{15}\)

\(\Rightarrow x=15\)

f. \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{22}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right)x=\frac{22}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{22}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{22}{45}\)

\(\Rightarrow\frac{1}{2}.\frac{22}{45}x=\frac{22}{45}\)

\(\Rightarrow\frac{11}{45}x=\frac{22}{45}\)

\(\Rightarrow x=2\)

2 tháng 4 2017

thứ mấy bn nộp

8 tháng 11 2016

A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)

=> A = \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

= \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)

= \(\frac{1}{2}.\frac{5049}{10100}\)

= \(\frac{5049}{20200}\)

8 tháng 11 2016

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{99.100.101}\)

Ta thấy:

\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4};...;\frac{2}{99.100.101}=\frac{1}{99.100}-\frac{1}{100.101}\)

\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\)

\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{100.101}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{10100}\)

\(\Rightarrow2A=\frac{5050}{10100}-\frac{1}{10100}\)

\(\Rightarrow2A=\frac{5049}{10100}\Rightarrow A=\frac{5049}{10100}:2=\frac{5049}{20200}\)

 

21 tháng 2 2016

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{22}{45}\)

\(\Leftrightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+..+\frac{2}{8.9.10}\right).x=\frac{44}{45}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{44}{45}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{44}{45}\Leftrightarrow\frac{22}{45}.x=\frac{44}{45}\Leftrightarrow x=2\)

Vậy x=2

23 tháng 7 2017

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{8.9.10}\right).x=\frac{22}{45}\)

\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+......+\frac{2}{8.9.10}\right).x=\frac{22}{45}\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{22}{45}\)

\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{22}{45}\)

\(\frac{1}{2}.\frac{22}{45}.x=\frac{22}{45}\)

\(\frac{11}{45}.x=\frac{22}{45}\)

\(x=\frac{22}{45}:\frac{11}{45}\)

\(x=2\)

16 tháng 1 2017

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}-3x=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)

\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)-3x=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)

\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)-3x=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)

\(\Leftrightarrow\frac{4949}{19800}-3x=\frac{451}{8120}\)

\(\Leftrightarrow x\approx0,0648\)

19 tháng 7 2016

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=>2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{98.99.100}\)

Dễ dàng CM đẳng thức phụ sau : \(\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\)

Áp dụng vào tính 2B,ta có:

\(2B=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+....+\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}=>B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

Vậy.....

19 tháng 7 2016

1/1.2.3 + 1/2.3.4 + .... + 1/98.99.100

= 1/2(1/1.2-1/2.3) + 1/2(1/2.3-1/3.4) + ..... + 1/2(1/98.99-1/99.100)

= 1/2(1/1.2-1/2.3+1/2.3-....+1/98.99-1/99.100)

= 1/2(1/2 - 1/9900)

= 1/2(4950/9900 - 1/9900)

= 1/2. 4949/9900

= 4949/19800