\(1^2+2^2+3^2+4^2+....+98^2+99^2+100^2\)

Tính E

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

E=12+22+32+42+...+982+992+1002

=1+2(1+1)+3(1+2)+4(1+3)+....+98(1+97)+99(1+98)+100(1+99)

=1+1.2+2+3+2.3+4+3.4+....+98+97.98+99+98.99+100+99.100

=(1+2+3+4+...+100)+(1.2+2.3+3.4+...+99.100)

Đặt A=1+2+3+...+100=\(\frac{\left(100+1\right).100}{2}=5050\)

Đặt B=1.2+2.3+3.4+...+99.100

3B=1.2.3+2.3.3+....+99.100.3

3B=1.2.3+2.3.(4-1)+...+99.100.(101-98)

3B=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100

3B=99.100.101

=>B=\(\frac{99.100.101}{3}=333300\)

Vậy E=A+B=5050+333300=338350

27 tháng 3 2020

e)đặt A=2^2+4^2+6^2+...+98^2+100^2

=2.2+4.4+6.6+...+98.98+100.100

=2.(4-2)+4.(6-2)+6.(8-2)+...+98.(100-2)+100.(102-2)

=2.4-4+4.6-8+6.8-12+...+98.100-196+100.102-200

=(2.4+4.6+6.8+...+98.100+100.102)-(4+8+12+...+196+200)

Đặt B=2.4+4.6+6.8+...+98.100+100.102

      6B=2.4.6+4.6.6+...+98.100.6+100.102.6

          =2.4.6+4.6.(8-2)+...+98.100.(102-96)+100.102.(104-98)

           =2.4.6+4.6.8-2.4.6+...+98.100.102-96.98.100+100.102.104-98.100.102

          =(2.4.6-2.4 .6)+...+(98.100.102-98.100.102)+100.102.104

          =100.102.104

      B=100.102.104/6=100.17.104=176800

Đặt C=4+8+12+...+196+200   Có 50 số hạng         Công thức tính số các số hạng  (số cuối-số đầu):khoảng cách+1

        =(200+4).50/2=5100                                         Công thức tính tổng số các số hạng  (số cuối +số đầu ). số các số hạng :2

Ta có A=176800-5100=171700

f) làm tương tự,hơi dài nên đành làm vậy,xin lỗi nha,nếu mà khó quá kết bạn với tớ ,tớ giải cho nha

Gợi ý đặt A=..

                  =...

                  =...

      Đặt B=...

          6B=...

              =...

             =...

       Đặt C=...

               =...

Ta có

14 tháng 8 2017

câu g) 

\(G=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right).\)

\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}...\cdot\frac{120}{121}\)

\(=\frac{3.\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{2.2.3.3.4.4.5.5....11.11}\)

\(=\frac{12}{3}=4\)

14 tháng 8 2017

câu mình trả lời sai rồi thông cảm

a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow A+2A=2^{101}-2\)

  \(A\left(1+2\right)=2^{101}-2\)

  \(A.3=2^{101}-2\)

  \(A=\frac{2^{101}-2}{3}\)

b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3\)

\(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2\)

\(\Rightarrow B+3B=3^{101}-3\)

\(B\left(1+3\right)=3^{101}-3\)

\(4B=3^{101}-3\)

   \(B=\frac{3^{101}-3}{4}\)

2 tháng 7 2018

a, \(A=...\)

=>\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=>\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2+2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=>\(3A=2^{101}-2\)

=>\(A=\frac{2^{101}-2}{3}\)

b, tương tự a \(B=\frac{3^{101}+1}{4}\)

22 tháng 8 2016

A = 2100 - 299 + 298 - 297 + ... + 22 - 2

   = ( 2100 + 298 + ... + 2) - ( 299 + 297 + ... + 2 )

   = ( 2100 + 298 + ... + 2) - 2( 299 + 297 + ... + 2 ) + ( 299 + 297 + ... + 2 )

   = 299 + 297 + ... + 2 

=> 4A = 2103 + 299 + ... + 23

=> 3A = 2103 - 2

=> A = \(\frac{2^{103}-2}{3}\)

7 tháng 1 2017

=(100-99).(100+99)+(98-97).(98+97)+...+(2-1).(2+1)

=100+99+98+97+...+2+1

=100.(100+1):2=5050.

Chúc bạn học giỏi nhe.

25 tháng 7 2017

Ta có :

\(A=\frac{1}{3}+\frac{2}{3^2}+......+\frac{100}{3^{100}}\) \(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+.....+\frac{100}{3^{99}}\)

\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)= 2A

Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\) \(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\)

\(\Rightarrow3B-B=3-\frac{1}{3^{99}}=2B\) \(\Rightarrow B=\frac{3}{2}-\frac{1}{3^{99}.2}\)

\(\Rightarrow2A=\frac{3}{2}-\frac{1}{3^{99}.2}-\frac{100}{3^{100}}\)\(\Rightarrow A=\frac{3}{4}-\frac{1}{3^{99}.4}-\frac{100}{3^{100}}< \frac{3}{4}\Rightarrow\left(đpcm\right)\)

Ta có :

\(C=1+3+3^2+....+3^{100}\) \(\Rightarrow C-1=3+3^2+....+3^{100}\)

\(\Rightarrow3\left(C-1\right)=3^2+3^3+.....+3^{101}\)\(\Rightarrow3C-3-\left(C-1\right)=3^{101}-3\)

\(\Rightarrow2C-2=3^{101}-3\Rightarrow2C=3^{101}-1\)\(\Rightarrow C=\frac{3^{101}-1}{2}\)

Ta có :

\(D=2^{100}-2^{99}+2^{98}-.....-2\) \(\Rightarrow2D=2^{101}-2^{100}+2^{99}-.....-2^2\)

\(\Rightarrow2D+D=2^{101}-2=3D\) \(\Rightarrow D=\frac{2^{101}-2}{3}\)

25 tháng 7 2017

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(2A=1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)

Ta thấy biểu thức trong dấu ngoặc nhỏ hơn 1/2 ( tự chứng minh ) nên 2A < 1 + 1/2 

\(\Rightarrow A< \frac{3}{4}\)

25 tháng 7 2017

\(C=1+3+3^2+3^3+...+3^{100}\)

\(3C=3+3^2+3^3+3^4+...+3^{101}\)

\(3C-C=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)

\(2C=3^{101}-1\)

\(C=\frac{3^{101}-1}{2}\)