Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)(x+3)2-(x-4)(x+8)=1
\(\Rightarrow\)x2+6x+9-(x2+8x-4x-32)=1
⇒x2+6x+9-x2-8x+4x+32=1
⇒2x+41=1
\(\Rightarrow\)2x+41-1=0
\(\Rightarrow\)2x+40=0
⇒2x=-40
\(\Rightarrow\)x=\(\dfrac{-40}{2}\)
⇒x=-20
\(a,\)( sửa lại xíu đề cho đúng nhé )
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=-\frac{2x}{x^2+x+1}\)
\(\Rightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1-3x^2=-2x^2+2x\)
\(\Rightarrow x=1\)
\(g,\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=-16\)
\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=-16\)
Đặt \(x^2+10x+16=a\)
\(\Rightarrow a\left(a+8\right)=-16\)
\(\Rightarrow a^2+8a+16=0\)
\(\Rightarrow\left(a+4\right)^2=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Rightarrow x^2+10x+25-25=0\)
\(\Rightarrow\left(x+5\right)^2-\left(\sqrt{5}\right)^2=0\)
\(\Rightarrow\left(x+5-\sqrt{5}\right)\left(x+5+\sqrt{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)
a) \(22-x\left(1-4x\right)=\left(2x+3\right)^3\)
\(\Leftrightarrow22-x+4x^2=8x^3+36x^2+54x+27\)
\(\Leftrightarrow-x-54x+4x^2-36x^2-8x^3=-22+27\)
\(\Leftrightarrow-8x^3-32x^2-55x=5\Leftrightarrow-8x^3-32x^2-55x-5=0\)
Bn tự làm tiếp nhé
b) \(\frac{2x}{3}+\frac{2x-1}{6}=\frac{4-x}{3}\Leftrightarrow\frac{2.2x}{6}+\frac{2x-1}{6}=\frac{2\left(4-x\right)}{6}\)
\(\Leftrightarrow2.2x+2x-1=2\left(4-x\right)\Leftrightarrow4x+2x-1=8-2x\)
\(\Leftrightarrow6x-1=8-2x\Leftrightarrow8x=9\Leftrightarrow x=\frac{9}{8}\)
Vậy phương trình có tập nghiệm S ={9/8}
c) \(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)
\(\Leftrightarrow\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)
\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
Do \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}>0\)
Nên \(x-2020=0\Leftrightarrow x=2020\)
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
\(\Rightarrow x^3+2x^2+x+x^2+2x+1-x\left(x^2-2x+1\right)+\left(x^2-2x+1\right)-6x^2+12x-6=-19\)
\(\Rightarrow x^3+2x^2+x+x^2+2x+1-x\left(x^2-2x+1\right)+x^2-2x+1-6x^2+12x-6=-19\)
\(\Rightarrow x^3-2x^2+13x-4-x\left(x^2-2x+1\right)=-19\)
\(\Rightarrow x^3-2x^2+13x-4-x^3+2x^2-x=-19\)
\(\Rightarrow12x-4=-19\)
\(\Rightarrow12x=-15\)
\(\Rightarrow x=\frac{-5}{4}\)
\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)
\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)
\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)
\(=-10x^3+19x^2+74x+1\)
\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)
\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)
\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)
\(=-5x^4-11x^3+24x^2+12x+7\)
\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)
\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)
\(=-2x^2-27x+57\)
\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)
\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)
\(=-x^3+4x^2+22x+5\)
\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)
\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)
\(=-9x^3-55x^2+4x+35\)
\(g,\left(x-1\right)^2-\left(x+2\right)^2\)
\(=x^2-2x+1-x^2-4x-4\)
\(=-6x-3\)
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\\ \Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6=-19\\ \Leftrightarrow12x=-15\\ \Leftrightarrow x=-\dfrac{15}{12}=-\dfrac{5}{4}\)
\(\Leftrightarrow\)\(x^3+3x^2+3x+1-(x^3-3x^2+3x-1)-(6x^2-12x+6)+19=0\)
\(\Leftrightarrow\)\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)
\(\Leftrightarrow\)\(12x+15=0\)
\(\Leftrightarrow\)\(x=-\dfrac{5}{4}\)