L=(sin1+sin2+....+sin88+sin89)−(cos1+cos2+cos3+....+cos88+cos...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

a)Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có: 

\(\sin1=\cos89....\sin89=\cos1\) 

Vậy \(A=0\) 

b) Theo định lí tỉ số lượng giác của 2 góc phụ nhau, ta có: 

\(\tan1=\cot89...\tan2=\cot88...\)

\(\Rightarrow B=\tan45\cdot\tan46\cdot\cot46\cdot...\cdot\tan89\cdot\cot89\)

Mà \(\tan\lambda\cdot\cot\lambda=1\) 

\(\Rightarrow B=\tan45\cdot1=1\)

c) Bạn làm tương tự dựa vào CT \(\sin^2\lambda+\cos^2\lambda=1\)

3 tháng 8 2018

4. \(D=sin^21^o+sin^22^o+sin^23^o+...+sin^287^o+sin^288^o+sin^289^o=\left(sin^21^o+sin^289^o\right)+\left(sin^22^o+sin^288^o\right)+...+\left(sin^244^o+sin^246^o\right)+sin^245^o=1+1+1+...+1+1+0,5=44,5\)

3 tháng 8 2018

\(5.E=cos^21^o+cos^22^o+cos^23^o+...+cos^287^o+cos^288^o+cos^289^o=\left(cos^21^o+cos^289^o\right)+\left(cos^22^o+cos^288^o\right)+...+\left(cos^244^o+cos^246^o\right)+cos^245^o=1+1+1+...+1+0,5=1.44+0,5=44,5\)

1. \(\left(2018-2019\right)\) Cho đường tròn tâm \(\left(2016-2017\right)\) Cho tam giác đều ABC nội tiếp đường tròn tâm O. Điểm E thay đổi trên cung nhỏ AB (E khác A và B). Từ B và C lần lượt kẻ các tiếp tuyến với đường tròn (O), các tiếp tuyến này cắt đường thẳng AE theo thứ tự tại M và N. Gọi F là giao điểm của BN và CM a) Chứng minh rằng \(MB.CN=BC^2\) b) Khi điểm E thay đổi trên cung nhỏ AB....
Đọc tiếp

1. \(\left(2018-2019\right)\) Cho đường tròn tâm \(\left(2016-2017\right)\) Cho tam giác đều ABC nội tiếp đường tròn tâm O. Điểm E thay đổi trên cung nhỏ AB (E khác A và B). Từ B và C lần lượt kẻ các tiếp tuyến với đường tròn (O), các tiếp tuyến này cắt đường thẳng AE theo thứ tự tại M và N. Gọi F là giao điểm của BN và CM

a) Chứng minh rằng \(MB.CN=BC^2\)

b) Khi điểm E thay đổi trên cung nhỏ AB. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định

3. \(\left(2015-2016\right)\) Cho tam giác nhọn \(\left(2014-2015\right)\) Cho tam giác ABC vuông ở A có đường cao AH, trên cạnh BC lấy điểm E, F sao cho CE = CA, BF = BA. Gọi I, I1, I2 lần lượt là tâm đường tròn nội tiếp các tam giác ABC, ABH, ACH và M là giao điểm của BI và AC. Chứng minh rằng

a) Ba điểm A, I1, E thẳng hàng và IE = IF

b) Đường thẳng FM là tiếp tuyến của đường tròn ngoại tiếp tam giác II1I2

5. \(\left(2013-2014\right)\) Cho tam giác \(AB=AC=a\), \(\widehat{BAC}=120^o\). Ký hiệu

0
26 tháng 2 2020

batngo

26 tháng 2 2020

batngo