K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

đề bài:Biến đổi các biểu thức sau thành tích các đa thức:

2 tháng 10 2021

e) \(125x^6-27y^9=\left(5x^2\right)^3-\left(3y^3\right)^3=\left(5x^2-3y^3\right)\left(25x^4+15x^2y^3+9y^6\right)\)

f) \(x^9-27y^3=\left(x^3\right)^3-\left(3y\right)^3=\left(x^3-3y\right)\left(x^6+3x^3y+9y^2\right)\)

a: \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)

b: \(27-8y^3=\left(3-2y\right)\left(9+6y+4y^2\right)\)

c: \(y^6+1=\left(y^2+1\right)\left(y^4-y^2+1\right)\)

d: \(64x^3-\dfrac{1}{8}y^3=\left(4x-\dfrac{1}{2}y\right)\left(16x^2+2xy+\dfrac{1}{4}y^2\right)\)

2 tháng 10 2021

giúp mình câu e,f với

6 tháng 8 2018

Gọi giao điểm của AH và DC là I.

AF song song với DI (cùng vuông góc với AD) (1)

\(\Delta ADI=\Delta BAE\left(g.c.g\right)\Rightarrow DI=AE\) ( 2 cạnh tương ứng )

Mà \(AE=AF\left(gt\right)\Rightarrow DI=AF\) (2)

Từ (1) và (2) \(\Rightarrow AFID\)là hình bình hành.

Mà \(\widehat{FAD}=90^0\Rightarrow AFID\) là hình chữ nhật.

Từ đó: FBCI là hình chữ nhật nên IB = CF (t/c hình chữ nhật)

Gọi O là giao điểm của FC và BI \(\Rightarrow O\) là trung điểm của FC và BI

\(\Delta BHI\) vuông tại B có HO là đường trung tuyến ứng với cạnh CF nên

\(HO=\frac{1}{2}BI\Rightarrow HO=\frac{1}{2}CF\)

\(\Delta CHF\)có đường trung tuyến HO = 1/2 CF nên \(\Delta CHF\) vuông tại H.

Vậy \(\widehat{CHF}=90^0\)

Mình chỉ hướng dẫn bước thôi. Bạn tự trình bày nhé

Mong bạn hiểu lời giải. Chúc bạn học tốt.

7 tháng 8 2018

Cảm ơn bạn nhiều.

3 tháng 9 2017

cậu tự vẽ hình nhé

ta có ABCD là hình bình hành => AB=CD =>BE=DF

và ta có AB//CD => BE//DF

=> EBCF là hình bình hành => DE=BF(ĐPCM)

3 tháng 9 2017

ABCD là hình bình hành nên AB =CD (cạnh đối của hình bình hành) (1) 
F là trung điểm của BC (theo đầu bài) nên BF = 1/2 BC (2). 
E là trung điểm của AD (theo đầu bài) nên ED = 1/2 AD (3). 
Từ (1), (2) và (3) suy ra BF = ED (4). 
BF // ED (vì F nằm trên AB, E nằm trên AD; BC và AD là cạnh đối của hình bình hành ABCD nên BC//AD) (5). 
Từ (4) và (5) suy ra BFDE là hình bình hành (2 cạnh đối song song và bằng nhau) =>BE = DF (điều phải chứng minh)

20 tháng 11 2023

a:

ABCD là hình thoi

=>\(\widehat{C}+\widehat{B}=180^0\) và \(\widehat{B}=\widehat{D}=60^0\)

=>\(\widehat{C}=180^0-60^0=120^0\)

Xét ΔAFB vuông tại F và ΔAED vuông tại E có

AB=AD

\(\widehat{B}=\widehat{D}\)

Do đó: ΔAFB=ΔAED

=>AF=AE và BF=ED

Xét tứ giác AECF có

\(\widehat{AEC}+\widehat{AFC}+\widehat{C}+\widehat{FAE}=360^0\)

=>\(\widehat{FAE}+120^0+90^0+90^0=360^0\)

=>\(\widehat{FAE}=60^0\)

Xét ΔAEF có AE=AF và \(\widehat{FAE}=60^0\)

nên ΔAEF đều

b: CE+ED=CD

CF+FB=CB

mà CD=CB và ED=FB

nên CE=CF

Xét ΔCBF có \(\dfrac{CE}{CD}=\dfrac{CF}{CB}\)

nên EF//BD

21 tháng 11 2023

Mình cảm ơn ạ.

24 tháng 9 2021

d. 2x2(x - y) + 2y(y - x)

= 2x2(x - y) - 2y(x - y)

= (2x2 - 2y)(x - y)

= 2(x2 - y)(x - y)

e. 5a2b(a - 2b) - 2a(2b - a)

= 5a2b(a - 2b) + 2a(a - 2b)

= (5a2b + 2a)(a - 2b)

= a(5ab + 2)(a - 2b)

f. 4x2y(x - y) + 9xy2(x - y)

= (4x2y + 9xy2)(x - y)

= xy(4x + 9y)(x - y)

g. 50x2(x - y)2 - 8y2(y - x)2

= 50x2(x2 - 2xy + y2) - 8y2(y2 - 2xy + x2)

= 50x2(x2 - 2xy + y2) - 8y2(x2 - 2xy + y2)

= 50x2(x - y)2 - 8y2(x - y)2

= (50x2 - 8y2)(x - y)2

= 2(25x2 - 4y2)(x - y)2.

24 tháng 9 2021

Cảm ơn bạn

c: \(\Leftrightarrow\dfrac{x}{2012}-1+\dfrac{x+1}{2013}-1+\dfrac{x+2}{2014}-1+\dfrac{x+3}{2015}-1+\dfrac{x+4}{2016}-1=0\)

=>x-2012=0

hay x=2012

d: \(\Leftrightarrow\dfrac{x-90}{10}-1+\dfrac{x-76}{12}-2+\dfrac{x-58}{14}-3+\dfrac{x-36}{16}-4+\dfrac{x-15}{17}-5=0\)

=>x-100=0

hay x=100

20 tháng 11 2023

Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

=>AEDF là hình chữ nhật

Hình chữ nhật AEDF có AD là phân giác của \(\widehat{FAE}\)

nên AEDF là hình vuông

21 tháng 11 2023

Mình cảm ơn ạ.

1 tháng 10 2021

1/(x+2)-(3x-1)2=(x+2+3x-1)(x+2-3x+1)=4x(-2x+3)=-8x2+12x

2/(x4+x2)(-2x3-2x)=x2(x2+1)-2x(x2+1)=(x2+1)(x2-2x)