K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Ta viết lại phương trình đường tròn: x2+ y2-2x + 3y -3= 0

Suy ra a= 1; b= -1,5 và c= -3 và bán kính R= 1 2 + 1 , 5 2 + 3 2 = 5 2

Chọn A.

12 tháng 4 2016

I(2; -3); R = 4

12 tháng 4 2016

a)     Tâm I(2 ; -4), R = 5

b)    Đường tròn có phương trình:    (x – 2 )2 + (y + 4)2  = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2  = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25   <=>   3x – 4y + 3 = 0

Chú ý:

1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:

Vectơ    = (-3; 4)

Tiếp tuyến đi qua A(-1; 0) và nhận  làm một vectơ pháp tuyến có phương trình:

-3(x + 1) + 4(y – 0) = 0  ,<=> 3x – 4y + 3 = 0

12 tháng 4 2016

Ta có : -2a = -2 => a = 1

-2b = -2 => b = 1  => I(1; 1)

R2 = a2 + b2 – c = 12 + 12 – (-2) = 4  => R = 2

12 tháng 4 2016

I (); R = 1

29 tháng 8 2017

Akai Haruma

5 tháng 10 2017

c

5 tháng 10 2017

Dựa vào công thức tổng quát: \(\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)

Ta có: \(\left[\dfrac{5.\left(5+1\right)}{2}\right]^2=\left(\dfrac{30}{2}\right)^2=15^2\)

Vậy chọn đáp án D!

30 tháng 12 2022

3: =>a^2c^2+a^2d^2+b^2c^2+b^2d^2>=a^2c^2+2abcd+b^2d^2

=>a^2d^2-2abcd+b^2c^2>=0

=>(ad-bc)^2>=0(luôn đúng)

NV
14 tháng 4 2020

a/ - Với \(x\ge\frac{3}{5}\) BPT tương đương:

\(2x^2-5x+3< 0\Leftrightarrow1< x< \frac{3}{2}\)

- Với \(x< \frac{3}{5}\) BPT tương đương:

\(x^2+5x-3< 0\Leftrightarrow\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\)

Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}1< x< \frac{3}{2}\\\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\end{matrix}\right.\)

b/ -Với \(x< 8\) BPT vô nghiệm

- Với \(x\ge8\) hai vế ko âm, bình phương:

\(\left(x-8\right)^2>\left(x^2+3x-4\right)^2\)

\(\Leftrightarrow\left(x^2+3x-4\right)^2-\left(x-8\right)^2< 0\)

\(\Leftrightarrow\left(x^2+4x-12\right)\left(x^2-2x+4\right)< 0\)

\(\Leftrightarrow x^2+4x-12< 0\Rightarrow-6< x< 2\) (ktm)

Vậy BPT đã cho vô nghiệm

15 tháng 1 2020
https://i.imgur.com/E1sQlgv.png
AH
Akai Haruma
Giáo viên
16 tháng 1 2020

Câu 1 cần bổ sung thêm điều kiện $a,b,c$ là 3 cạnh của tam giác, tức là đảm bảo mẫu các phân thức vế trái luôn dương.

Nếu không, BĐT sai trong TH $(a,b,c)=(3,2,10)$

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{a^4}{ab+ac-a^2}+\frac{b^4}{bc+ba-b^2}+\frac{c^4}{ac+bc-c^2}\geq \frac{(a^2+b^2+c^2)^2}{ab+ac-a^2+bc+ba-b^2+ca+cb-c^2}\)

\(=\frac{(a^2+b^2+c^2)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}(1)\)

Mà theo BĐT AM-GM ta thấy: $ab+bc+ac\leq a^2+b^2+c^2$

$\Rightarrow 2(ab+bc+ac)-(a^2+b^2+c^2)\leq a^2+b^2+c^2(2)$

Từ $(1);(2)\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{a^2+b^2+c^2}=a^2+b^2+c^2$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$