Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tổng quát \(\Delta\):
\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0
a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)
Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5
<=> \(5y^2-18y-8=0\)
<=>y=4 và y=\(\dfrac{-2}{5}\)
Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))
b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0
Ta có hệ phương trình:
\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)
\(\begin{cases} x=-2\\ y=1 \end{cases}\)
=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d
c. Nhận thấy, điểm A\(\notin\)\(\Delta\)
Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)
Vì M\(\in\Delta\)=> M(2y-4;y)
Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)là \(\overrightarrow{u}\)(2;1)
\(\overrightarrow{AM}\) (2y-4;y-1)
Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)
<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)
<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0
<=> 2(2y-4)+(y-1)=0
<=> 5y-9=0
<=> y= \(\dfrac{9}{5}\)
=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))
\(M\in d\Rightarrow M\left(3-2t;1+3t\right)\)
\(\Rightarrow\)\(\overrightarrow{AM}=\left(-1-2t;1+3t\right)\)
\(\Rightarrow AM=\sqrt{\left(-1-2t\right)^2+\left(1+3t\right)^2}=5\)
\(\Leftrightarrow13t^2+10t-23=0\Rightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{-23}{13}\end{matrix}\right.\)
\(+t=1\Rightarrow M\left(1;4\right)\)
\(+t=\dfrac{-23}{13}\Rightarrow M=\left(\dfrac{85}{13};\dfrac{-56}{13}\right)\)
vậy có 2 điểm M cần tìm.
Ta có : \(MA=5\leftrightarrow x^2+\left(y-1\right)^2=5^2\)
Thay tọa độ điểm x,y vào tham số t vào pt trên ta được :
\(\left(2+2t\right)^2+\left(3+t-1\right)^2=25\)
\(\Leftrightarrow4t^2+8t+4+4+4t+t^2=25\)
\(\Leftrightarrow5t^2+12t-17=0\rightarrow t_1=1;t_2=-\dfrac{17}{5}\)
Với \(t_1=1\), ta được điểm \(x=4;y=4\Rightarrow M_1\left(4;4\right)\)
Với \(t_2=-\dfrac{17}{5}\)ta được điểm \(x=-\dfrac{24}{5};y=-\dfrac{2}{5}\Rightarrow M_2\left(-\dfrac{24}{5};-\dfrac{2}{5}\right)\)
Bài 3:
H thuộc Δ nên H(x;4/5x+3/5)
\(\overrightarrow{AH}=\left(x+1;\dfrac{4}{5}x-\dfrac{12}{5}\right)\)
Δ: 4x-5y+3=0
=>VTPT là (4;-5)
=>VTCP là (5;4)
Theo đề, ta có: 5(x+1)+4(4/5x-12/5)=0
=>5x+5+16/5x-48/5=0
=>31/5x-23/5=0
=>x=23/31
=>y=4/5*23/31+3/5=37/31
a+9b=23/31+9*37/31=356/31
a) đặc C (x;y) , ta có : C \(\in\) (d) \(\Leftrightarrow x=-2y-1\)
vậy C (-2y -1 ; y ).
tam giác ABC cân tại C khi và chỉ khi
CA = CB \(\Leftrightarrow\) CA2 = CB2
\(\Leftrightarrow\) (3+ 2y + 1)2 + (- 1- y)2 = (- 1+ 2y + 1)2 + (- 2- y)2
\(\Leftrightarrow\) (4 + 2y)2 + (1 + y)2 = 4y2 + (2 + y)2
giải ra ta được y = \(\dfrac{-13}{14}\) ; x = \(-2\left(\dfrac{-13}{14}\right)-1=\dfrac{13}{7}-1=\dfrac{6}{7}\)
vậy C có tọa độ là \(\left(\dfrac{6}{7};\dfrac{-13}{14}\right)\)
b) xét điểm M (- 2t - 1 ; t) trên (d) , ta có :
\(\widehat{AMB}\) = 900 \(\Leftrightarrow\) AM2 + BM2 = AB2
\(\Leftrightarrow\) (4 + 2t)2 + (1 + t)2 + 4t2 + (2 + t)2 = 17
\(\Leftrightarrow\) 10t2 +22t + 4 = 0 \(\Leftrightarrow\) 5t2 + 11t + 2 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{-1}{5}\\t=-2\end{matrix}\right.\)
vậy có 2 điểm thỏa mãn đề bài là M1\(\left(\dfrac{-3}{5};\dfrac{-1}{5}\right)\) và M2\(\left(3;-2\right)\)
\(y=m\left(2x+1\right)-3x-3\Leftrightarrow-m\left(2x+1\right)+3x+y+3=0\)
\(\Rightarrow\) đường thẳng luôn đi qua điểm cố định \(M\left(-\frac{1}{2};-\frac{3}{2}\right)\)
Gọi H là hình chiếu vuông góc của O lên đường thẳng
\(\Rightarrow OH=d\)
Theo định lý đường xiên - đường vuông góc ta luôn có:
\(OH\le OM\Rightarrow OH_{max}=OM\) khi \(H\equiv M\)
Mà \(OM=\sqrt{\left(-\frac{1}{2}\right)^2+\left(-\frac{3}{2}\right)^2}=\frac{\sqrt{10}}{2}\Rightarrow d=\frac{\sqrt{10}}{2}\)