K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Đáp án D

16 tháng 11 2019

19 tháng 5 2019

Chọn C

Dựa vào định nghĩa mệnh đề 1 sai và mệnh đề 2, 3, 4 đúng.

13 tháng 9 2018

Đáp án C

Vì phương trình có ba nghiệm phân biệt nên đồ thị hàm số có ba đường tiệm cận đứng.

Mặt khác, ta có:

nên đường thẳng là đường tiệm cận ngang của đồ thị hàm số .

nên đường thẳng y=0 là đường tiệm cận ngang của đồ thị hàm số .

Vậy .

30 tháng 1 2017

Đáp án: A.

Nhận xét rằng hàm số dạng Giải sách bài tập Toán 12 | Giải sbt Toán 12 (a, b ≠ 0) có tiệm cận đứng là Giải sách bài tập Toán 12 | Giải sbt Toán 12 và tiệm cận ngang là y = 0.

23 tháng 11 2019

Đáp án: A.

Nhận xét rằng hàm số dạng Giải sách bài tập Toán 12 | Giải sbt Toán 12 (a, b ≠ 0) có tiệm cận đứng là Giải sách bài tập Toán 12 | Giải sbt Toán 12 và tiệm cận ngang là y = 0.

20 tháng 1 2019

Chọn A

Đk để hàm số xác định là: . Vậy mệnh đề đúng.

Do hàm số có tập xác định nên không tồn tại do đó đồ thị hàm số này không có đường tiệm cận ngang. Vậy mệnh đề sai.

Do nên đồ thị hàm số có đường tiệm cận đứng là . Vậy đúng.

Ta có

Do bị đổi dấu qua nên hàm số có một cực trị. Vậy mệnh đề đúng.

 

Do đó số mệnh đề đúng là .

NV
2 tháng 9 2021

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{\dfrac{1}{x^3}-\dfrac{1}{x^4}}}{1-\dfrac{3}{x}+\dfrac{2}{x^2}}=0\)

\(\Rightarrow y=0\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x-1}\left(x-2\right)}=\infty\)

\(\Rightarrow x=1\) là tiệm cận đứng

\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\dfrac{1}{0}=\infty\)

\(\Rightarrow x=2\) là tiệm cận đứng

ĐTHS có 1 TCN và 2 TCĐ

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Lời giải:

TXĐ: \((-\infty; -1)\cup (-1;+\infty)\)
\(\lim\limits_{x\to +\infty}y=\lim\limits_{x\to +\infty}\frac{1+\sqrt{1+\frac{1}{x}}}{1+\frac{1}{x}}=\frac{1+1}{1}=2\)

\(\lim\limits_{x\to -\infty}y=\lim\limits_{x\to -\infty}\frac{-1+\sqrt{1+\frac{1}{x^2}}}{-1+\frac{1}{-x}}=\frac{-1+1}{-1}=0\)

Do đó ĐTHS có 2 TCN là $y=0$ và $y=2$

\(\lim\limits_{x\to -1-}y=\lim\limits_{x\to -1-}\frac{x+\sqrt{x^2+1}}{x+1}=-\infty\) do \(\lim\limits_{x\to -1-}(x+\sqrt{x^2+1})=\sqrt{2}-1>0\) và \(\lim\limits_{x\to -1-}\frac{1}{x+1}=-\infty\)

Tương tự \(\lim\limits_{x\to -1+}y=+\infty\) nên $x=-1$ là TCĐ của đths

Vậy có tổng 3 TCN và TCĐ