K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2022

- Hình vẽ:

undefined

a) -Xét △ACH và △DCB có:

\(AC=DC\) (ACDE là hình vuông).

\(HC=CB\) (BCHF là hình vuông).

\(\widehat{ACH}=\widehat{DCB}=90^0\).

=>△ACH=△DCB (c-g-c).

=>\(AH=BD\) (2 cạnh tương ứng).

*BD cắt AH tại O.

- Ta có: \(\widehat{AHC}=\widehat{DBC}\) (△ACH=△DCB).

Mà \(\widehat{DBC}+\widehat{BDC}=90^0\) (△DCB vuông tại C).

=>\(\widehat{AHC}+\widehat{BDC}=90^0\).

Mà \(\widehat{BDC}=\widehat{ODH}\) (đối đỉnh).

=>\(\widehat{AHC}+\widehat{ODH}=90^0\).

Mà \(\widehat{AHC}+\widehat{ODH}+\widehat{HOD}=180^0\) (tổng 3 góc trong △HOD).

=>\(90^0+\widehat{HOD}=180^0\).

=>\(\widehat{HOD}=90^0\) nên \(AH\perp BD\) tại O.

b) - Xét △ADH có:

I là trung điểm AD (I là tâm đối xứng của hình vuông ACDE).

N là trung điểm DH (gt).

=>IN là đường trung bình của △ADH.

=>IN=\(\dfrac{1}{2}AH\) (1) ; IN//AH

- Xét △ADB có:

I là trung điểm AD (I là tâm đối xứng của hình vuông ACDE).

M là trung điểm AB (gt).

=>IM là đường trung bình của △ADB.

=>IM=\(\dfrac{1}{2}BD\)=\(\dfrac{1}{2}AH\). (2); IM//BD.

- Từ (1) và (2) suy ra: \(IM=IN\)

- Ta có: \(AH\perp BD\) (cmt) ; IN//AH (cmt) ; IM//BD(cmt).

=>\(IN\perp IN\) tại I.

- Xét △DHB có:

K là trung điểm BH (K là tâm đối xứng của hình vuông BCHF).

N là trung điểm DH (gt).

=>KN là đường trung bình của △DHB.

=>KN=\(\dfrac{1}{2}BD\) (3) ; NK//BD.

- Từ (3) và (4) suy ra: KN=IM mà KN//IM//BD.

=>NKMI là hình bình hành mà IM=IN (cmt)

=>NKMI là hình thoi mà \(\widehat{NIM}=90^0\) (\(IM\perp IN\) tại I).

=>NKMI là hình vuông.

 

 

a: Ta có: B và E đối xứng nhau qua AC

nên AC là đường trung trực của BE

=>AB=AE và CB=CE

Xét ΔCBA và ΔCEA có 

CB=CE

AB=AE

CA chung

Do đó: ΔCBA=ΔCEA

SUy ra: \(\widehat{CBA}=\widehat{CEA}=90^0\)

hay ΔAEC vuông tại E

b: Xéttứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

mà \(\widehat{CBA}=90^0\)

nên ABCD là hình chữ nhật

d: Gọi K là giao điểm của BE và AC

Xét ΔBDE có 

M là trung điểm của BD

K là trung điểm của BE

Do đó: MK là đường trung bình

=>MK//DE

Ta có: ABCD là hình chữ nhật

nên AD=BC

mà BC=CE
nên AD=CE

Xét tứ giác AEDC có DE//AC

nên AEDC là hình thang

mà AD=CE

nên AEDC là hình thang cân

10 tháng 11 2018

a, Ta có tam giác ACH = tam giác DCB (do HC=CB và AC=DC và là 2 tam giác vuông )
---> AH=DB và góc CHA = góc CBD
Mà góc CHA +góc CAH =90 độ
---> góc CBD + góc CAH =90 độ
-----> BD vuông AH
b, Xét tam giác ADB có I là trung điểm của DA,Ml là trung điểm của AB
------> IM là đường tb của tam giác DAB --> IM // DB (1)
Gọi giao của BD và AH là T
Ta lại có Tam giác HTB có N là trung điểm của HT , K là trung điểm của HB
----> N là đường trung bình của tam giác HTB---> NK//TB//TB hay NK//DB (2)
Từ (1),(2)--> NK//IM
---> Tam giác IMKN là hình bình hành
Lại có IM// DB mà DB vuông HA --> IM vuông HA
---> NKMI là hình chữ nhật