Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Hình vẽ:
a) -Xét △ACH và △DCB có:
\(AC=DC\) (ACDE là hình vuông).
\(HC=CB\) (BCHF là hình vuông).
\(\widehat{ACH}=\widehat{DCB}=90^0\).
=>△ACH=△DCB (c-g-c).
=>\(AH=BD\) (2 cạnh tương ứng).
*BD cắt AH tại O.
- Ta có: \(\widehat{AHC}=\widehat{DBC}\) (△ACH=△DCB).
Mà \(\widehat{DBC}+\widehat{BDC}=90^0\) (△DCB vuông tại C).
=>\(\widehat{AHC}+\widehat{BDC}=90^0\).
Mà \(\widehat{BDC}=\widehat{ODH}\) (đối đỉnh).
=>\(\widehat{AHC}+\widehat{ODH}=90^0\).
Mà \(\widehat{AHC}+\widehat{ODH}+\widehat{HOD}=180^0\) (tổng 3 góc trong △HOD).
=>\(90^0+\widehat{HOD}=180^0\).
=>\(\widehat{HOD}=90^0\) nên \(AH\perp BD\) tại O.
b) - Xét △ADH có:
I là trung điểm AD (I là tâm đối xứng của hình vuông ACDE).
N là trung điểm DH (gt).
=>IN là đường trung bình của △ADH.
=>IN=\(\dfrac{1}{2}AH\) (1) ; IN//AH
- Xét △ADB có:
I là trung điểm AD (I là tâm đối xứng của hình vuông ACDE).
M là trung điểm AB (gt).
=>IM là đường trung bình của △ADB.
=>IM=\(\dfrac{1}{2}BD\)=\(\dfrac{1}{2}AH\). (2); IM//BD.
- Từ (1) và (2) suy ra: \(IM=IN\)
- Ta có: \(AH\perp BD\) (cmt) ; IN//AH (cmt) ; IM//BD(cmt).
=>\(IN\perp IN\) tại I.
- Xét △DHB có:
K là trung điểm BH (K là tâm đối xứng của hình vuông BCHF).
N là trung điểm DH (gt).
=>KN là đường trung bình của △DHB.
=>KN=\(\dfrac{1}{2}BD\) (3) ; NK//BD.
- Từ (3) và (4) suy ra: KN=IM mà KN//IM//BD.
=>NKMI là hình bình hành mà IM=IN (cmt)
=>NKMI là hình thoi mà \(\widehat{NIM}=90^0\) (\(IM\perp IN\) tại I).
=>NKMI là hình vuông.
Bài 12:
:v Mình sửa P là trung điểm của EG
a) Ta có: \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\widehat{GAB}=\widehat{GAC}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\Rightarrow\widehat{EAC}=\widehat{GAB}\)
Xét tam giác EAC và tam giác BAG có:
\(\hept{\begin{cases}EA=AB\\\widehat{EAC}=\widehat{GAB}\left(cmt\right)\\AG=AC\end{cases}}\Rightarrow\Delta EAC=\Delta BAG\left(c-g-c\right)\)
\(\Rightarrow CE=BG\)( 2 cạnh t. ứng )
+) Gọi O là giao điểm của EC và BG, Gọi I là giao điểm của AC và BG
Vì \(\Delta EAC=\Delta BAG\left(cmt\right)\)
\(\Rightarrow\widehat{ACE}=\widehat{AGB}\)
Vì tam giác AIG vuông tại A nên \(\widehat{I1}+\widehat{AGB}=90^0\)(2 góc phụ nhau )
Mà \(\widehat{ACE}=\widehat{AGB}\left(cmt\right),\widehat{I1}=\widehat{I2}\)( 2 góc đối đỉnh )
\(\Rightarrow\widehat{I2}+\widehat{ACE}=90^0\)
Xét tam giác OIC có \(\widehat{I2}+\widehat{ACE}+\widehat{IOC}=180^0\left(dl\right)\)
\(\Rightarrow\widehat{IOC}=90^0\)
\(\Rightarrow BG\perp EC\)
b) Vì ABDE là hình vuông (gt)
\(\Rightarrow EB\)cắt AD tại Q là trung điểm của mỗi đường (tc)
Xét tam giác EBC có Q là trung điểm của EB (cmt) , M là trung điểm của BC (gt)
\(\Rightarrow QM\)là đường trung bình của tam giác EBC
\(\Rightarrow QM=\frac{1}{2}EC\left(tc\right)\)
CMTT: \(PN=\frac{1}{2}EC;QP=\frac{1}{2}BG,MN=\frac{1}{2}BG\)
Mà EC=BG (cm câu a )
\(\Rightarrow QM=MN=NP=PQ\)
Xét tứ giác MNPQ có \(QM=MN=NP=PQ\left(cmt\right)\)
\(\Rightarrow MNPQ\)là hình thoi ( dhnb ) (1)
CM: MN//BG , QM//EC ( dựa vào đường trung bình tam giác )
Mà \(BG\perp EC\left(cmt\right)\)
\(\Rightarrow MN\perp MQ\)
\(\Rightarrow\widehat{QMN}=90^0\)(2)
Từ (1) và (2) \(\Rightarrow MNPQ\) là hình vuông ( dhnb )
\(\)
Bài 11:
a) Ta có: \(\widehat{HAD}+\widehat{HAE}=90^0+90^0=180^0\)
\(\Rightarrow\widehat{DAE}=180^0\)
\(\Rightarrow D,A,E\)thẳng hàng
b) Vì AHBD là hình chữ nhật (gt)
\(\Rightarrow AB\)cắt DH tại trung điểm mỗi đường (tc) và AB=DH(tc)
Mà P là trung điểm của AB (gt)
\(\Rightarrow P\)là trung điểm của DH (1)
\(\Rightarrow PH=\frac{1}{2}DH,PA=\frac{1}{2}AB\)kết hợp với AB=DH (cmt)
\(\Rightarrow PH=PA\)
\(\Rightarrow P\in\)đường trung trục của AH
CMTT Q thuộc đường trung trực của AH
\(\Rightarrow PQ\)là đường trung trực của AH
c) Từ (1) => P thuộc DH
=> D,P,H thẳng hàng
d) Vì ABCD là hình chữ nhật (gt)
=> DH là đường phân giác của góc BHA (tc) mà góc BHA= 90 độ
=> góc DHA= 45 độ
CMTT AHE =45 độ
=> góc DHA+ góc AHE=90 độ
Hay góc DHE=90 độ
=> DH vuông góc với HE
Kẻ CE ⊥ AB, IH ⊥ AB, DF ⊥ AB
Suy ra: CE // DF // IH
IC = ID (gt)
Nên IH là đường trung bình của hình thang DCEF ⇒ IH = (DF + CE) / 2
Vì C là tâm hình vuông AMNP nên ∆ CAM vuông cân tại C
CE ⊥ AM ⇒ CE là đường trung tuyến (tính chất tam giác cân)
⇒ CE = 1/2 AM
Vì D là tâm hình vuông BMLK nên ∆ DBM vuông cân tại D
DF ⊥ BM ⇒ DF là đường trung tuyến (tính chất tam giác cân)
⇒ DF = 1/2 BM
Vậy CE + DF = 1/2 AM + 1/2 BM = 1/2 (AM + BM)= 1/2 AB = a/2
Suy ra: IH = (a/2) / 2 = a/4
a, Vì H,E đx nhau qua DF nên tam giác HDE cân tại D và có đường cao DF cũng là phân giác
Tương tự ta có tam giác DBE cân tại D có đường cao DC cũng là phân giác
Do đó \(\widehat{HDB}=\widehat{HDE}+\widehat{EDB}=2\left(\widehat{FDE}+\widehat{EDC}\right)=2\cdot90^0=180^0\)
Do đó B,H,D thẳng hàng
Mà \(DH=DE=DB\) (DHE và DEB cân tại D)
Vậy D là trung điêm BH
a, Ta có tam giác ACH = tam giác DCB (do HC=CB và AC=DC và là 2 tam giác vuông )
---> AH=DB và góc CHA = góc CBD
Mà góc CHA +góc CAH =90 độ
---> góc CBD + góc CAH =90 độ
-----> BD vuông AH
b, Xét tam giác ADB có I là trung điểm của DA,Ml là trung điểm của AB
------> IM là đường tb của tam giác DAB --> IM // DB (1)
Gọi giao của BD và AH là T
Ta lại có Tam giác HTB có N là trung điểm của HT , K là trung điểm của HB
----> N là đường trung bình của tam giác HTB---> NK//TB//TB hay NK//DB (2)
Từ (1),(2)--> NK//IM
---> Tam giác IMKN là hình bình hành
Lại có IM// DB mà DB vuông HA --> IM vuông HA
---> NKMI là hình chữ nhật