Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Xét tam giác ABE và CDF có:
\(\widehat{AEB}=\widehat{CFD}=90^o\)
AB = CD (Hai cạnh đối của hình bình hành)
\(\widehat{BAE}=\widehat{DCF}\) (So le trong)
nên \(\Delta ABE=\Delta CDF\) (Cạnh huyền - góc nhọn)
\(\Rightarrow BE=DF\)
Lại có BE và DF cùng vuông góc với AC nên BE // DF
Xét tứ giác BEDF có BE // DF và BE = DF nên BEDF là hình bình hành,
2/ Ta có do BC// AD nên \(\widehat{HBC}=\widehat{BAD}\) (Hai góc đồng vị)
Dó AB// CD nên \(\widehat{KDC}=\widehat{BAD}\) (Hai góc đồng vị)
Vậy nên \(\widehat{KDC}=\widehat{HBC}\)
Suy ra \(\Delta CHB\sim\Delta CKD\left(g-g\right)\Rightarrow\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CK}=\frac{CB}{AB}\)
Theo tính chất góc ngoài, ta có \(\widehat{ABC}=\widehat{BHC}+\widehat{HCB}=90^o+\widehat{HCB}\)
Do BC // AD; \(CK\perp AD\Rightarrow CK\perp BC\)
Suy ra \(\widehat{KCH}=\widehat{KCB}+\widehat{HCB}=90^o+\widehat{HCB}\)
Vậy \(\widehat{ABC}=\widehat{KCH}\)
Xét tam giác ABC và KCH có:
\(\widehat{ABC}=\widehat{KCH}\)
\(\frac{CH}{CK}=\frac{CB}{AB}\)
nên \(\Delta ABC\sim\Delta KCH\left(c-g-c\right)\)
*) Ta có \(\Delta ABE\sim\Delta ACH\left(g-g\right)\Rightarrow\frac{AB}{AC}=\frac{AE}{AH}\Rightarrow AB.AH=AC.AE\)
Tương tự \(\Delta AFD\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AC.AF\)
Suy ra \(AB.AH+AD.AK=AC.AE+AC.AF=AC\left(AE+AF\right)\)
Theo câu a, \(\Delta ABE=\Delta CDF\Rightarrow AE=CF\)
Vậy thì AE + AF = CF + AF = AC
Hay AB.AH + AD.AK = AC.AC = AC2
chu vi của tam giác abc là :
ab+bc+c=25 (1)
chu vi của tam giác acd là :
ac+cd+da=27 (2)
chu vi của tứ giác abcd là :
ab+cd+bc+da=32 (3)
từ (1) và(2) ta có :
ab+bc+ac+ac+cd+da=25+27=52 (4)
=>(ab+bc+cd+da)+2ac=52
từ (1)và(4) <=>32+2ac=52
=>2ac=52-32=20
=>ac=20:2=10
vậy ac=10cm
Xét \(\Delta ABC\) ta có:
\(\widehat B + \widehat {BAC} + \widehat {BCA} = 180^\circ \) (tính chất tổng ba góc trong tam giác)
Xét \(\Delta DAC\) ta có:
\(\widehat D + \widehat {DAC} + \widehat {DCA} = 180^\circ \)
Ta có:
\(\widehat B + \widehat {BAC} + \widehat {BCA} + \widehat D + \widehat {DAC} + \widehat {DCA} = 180^\circ + 180^\circ \)
\(\widehat B + \widehat D + \left( {\widehat {BAC} + \widehat {DAC}} \right) + \left( {\widehat {BCA} + \widehat {DCA}} \right) = 360^\circ \)
\(\widehat B + \widehat D + \widehat {BAD} + \widehat {BCD} = 360^\circ \)
Vậy tổng các góc của tứ giác \(ABCD\) bằng \(360^\circ \)