\(x\), biết :

a) \(x^2=15\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

a) \(x^2=15\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{15}\\x=-\sqrt{15}\end{matrix}\right.\)

b) \(x^2=22,8\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{22,8}\\x=-\sqrt{22,8}\end{matrix}\right.\)

c) \(x^2=351\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{351}=3\sqrt{39}\\x=-\sqrt{351}=-3\sqrt{39}\end{matrix}\right.\)

d) \(x^2=0,46\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{0,46}\\x=-\sqrt{0,46}\end{matrix}\right.\)

23 tháng 4 2017

a) x=\(\sqrt{15}\)

b) X=\(\sqrt{22.8}\)

c) x=\(\sqrt{351}\)

d) x=\(\sqrt{0.46}\)

25 tháng 9 2018

x2=15x2=15

Tìm ô có giá trị gần với 15 trong bảng bình phương ta được ô 14,98 và ô 15,05

* Với ô 14,98 tra bảng ta được x≈3,87x≈3,87. Đây là kết quả gần đúng nhưng hơi thiếu.

* Với ô 15,05 tra bảng ta được x≈3,88x≈3,88. Đây là kết quả gần đúng nhưng hơi thừa.

Thực hiện tương tự cho các bài còn lại.

30 tháng 5 2017

Căn bậc hai. Căn bậc ba

8 tháng 9 2018

Giải

Do \(\sqrt{a}\ge0\Leftrightarrow a\ge0\). Từ đó dễ dàng giải

a) \(\sqrt{2x^2}\ge0\Leftrightarrow2x^2\ge0\Leftrightarrow x\ge0\)

b) Đề sai bởi vì không có căn bậc 2 của số âm

c) \(\sqrt{2x^2+1}\ge0\Leftrightarrow2x^2+1\ge0\Leftrightarrow2x^2\ge-1\)

d) Đề sai vì không có căn bậc 2 của số âm

e) \(\sqrt{2-x^2}\ge0\Leftrightarrow2-x^2\ge0\Leftrightarrow x^2\le2\)

7 tháng 9 2018

a) \(\sqrt{2x^2}\)được xác định khi \(2x^2\ge0\Leftrightarrow x\ge0\)

b) \(\sqrt{-2x^2}\) được xác định khi \(-2x^2\ge0\Leftrightarrow x\le0\)

c: ĐKXĐ: \(2x^2+1>=0\)

=>\(x\in R\)

d: ĐKXĐ: \(\dfrac{-5}{x^2+1}>=0\)

hay \(x\in\varnothing\)

e: ĐKXĐ: \(2-x^2>=0\)

=>x2<=2

=>\(-\sqrt{2}< =x< =\sqrt{2}\)

17 tháng 7 2019

\(\sqrt {\dfrac{2}{{9 - x}}}\) có nghĩa khi \(\left\{ \begin{array}{l} \dfrac{2}{{9 - x}} \ge 0\\ 9 - x \ne 0 \end{array} \right. \Leftrightarrow 9 - x > 0 \Leftrightarrow - x > - 9 \Leftrightarrow x < 9\)

\(\sqrt {{x^2} + 2x + 1} \) có nghĩa khi: \({x^2} + 2x + 1 = {\left( {x + 1} \right)^2} > 0\forall x \in R\)

\(\sqrt{9-x^2}\) có nghĩa khi: \(9 - {x^2} \ge 0 \Leftrightarrow - {x^2} \ge - 9 \Leftrightarrow {x^2} \le 9 \Leftrightarrow \left| x \right| \le 9\)

\(\Leftrightarrow x\ge3\) hoặc \(x\ge-3\)

\(\sqrt {\dfrac{1}{{{x^2} - 4}}} \) có nghĩa khi: \(\left\{ \begin{array}{l} \dfrac{1}{{{x^2} - 4}} \ge 0\\ {x^2} - 4 \ne 0 \end{array} \right. \Leftrightarrow {x^2} - 4 > 0 \Leftrightarrow \left| x \right| > 4\)

\(\Leftrightarrow x>2\) hoặc \(x>-2\)

25 tháng 9 2018

Sử dụng bảng căn bậc hai, thử lại các kết quả bằng cách tra bảng căn bậc hai cho các kết quả vừa tìm được.

a: x=2,25

b: x=4,6225

c: x=0,2704

c: x=361/250000