\(\frac{13}{38}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

Dựa vào tính chất :x<y và y<z thì x<z, ta có :

-12/-37<0 và 0< 13/38

=> -12/-37<13/38

Chúc bạn học tốt!

 

 

11 tháng 6 2016

Ta có: \(\frac{13}{38}>\frac{13}{39}=\frac{1}{3}\)    (1)

\(\frac{-12}{-37}=\frac{12}{37}< \frac{12}{36}=\frac{1}{3}\)     (2)

Từ (1)(2) => \(\frac{13}{38}>\frac{-12}{-37}\)

 

24 tháng 8 2017

Ta có :\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{2}-\dfrac{1}{y}+\dfrac{1}{2}-\dfrac{1}{z}\Leftrightarrow\dfrac{1}{x}=\dfrac{y-2}{2y}+\dfrac{z-2}{2z}\)

Áp dụng bất đẳng thức cô si ta có :\(\dfrac{y-2}{2y}+\dfrac{z-2}{2z}\ge2\sqrt{\dfrac{\left(y-2\right)\left(z-2\right)}{4yz}}=\dfrac{\sqrt{\left(y-2\right)\left(z-2\right)}}{\sqrt{yz}}\)

\(\Rightarrow\)\(\dfrac{1}{x}\ge\dfrac{\sqrt{\left(y-2\right)\left(z-2\right)}}{\sqrt{yz}}\) (1)

Chứng minh tương tự :\(\dfrac{1}{y}\ge\dfrac{\sqrt{\left(x-2\right)\left(z-2\right)}}{\sqrt{xz}}\) (2)

\(\dfrac{1}{z}\ge\dfrac{\sqrt{\left(x-2\right)\left(y-2\right)}}{\sqrt{xy}}\) (3)

Nhân 3 bất đẳng thức (1),(2) và (3) vế theo vế ta được :

\(\dfrac{1}{xyz}\ge\dfrac{\left(x-2\right)\left(y-2\right)\left(z-2\right)}{xyz}\)

\(\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)

Dấu "=" xảy ra khi :\(x=y=z=3\)

Nếu \(\frac{x}{3}\)<0 thì x<0

Nếu \(\frac{x}{3}\)=0 thì x=0

Nếu 0<\(\frac{x}{3}\)<1 thì 0<x<3

14 tháng 10 2019
https://i.imgur.com/Yq3VaR1.jpg
14 tháng 10 2019

Câu 1 bạn có viết sai đề k

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Lời giải:

\(x,y,z\in [0;1]\Rightarrow xy; yz,xz\geq xyz\)

\(\Rightarrow P=\frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{xy+1}\leq \frac{x}{1+xyz}+\frac{y}{1+xyz}+\frac{z}{1+xyz}=\frac{x+y+z}{xyz+1}(*)\)

\(x,y,z\in [0;1]\Rightarrow \left\{\begin{matrix} (x-1)(y-1)\geq 0\\ (xy-1)(z-1)\geq 0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} xy+1\geq x+y\\ xyz+1\geq xy+z\end{matrix}\right.\)

\(\Rightarrow xyz+2+xy\geq x+y+z+xy\)

\(\Leftrightarrow xyz+2\geq x+y+z\)

Mà: \(xyz+2\leq 2xyz+2=2(xyz+1)\)

\(\Rightarrow x+y+z\leq 2(xyz+1)(**)\)

Từ \((*); (**)\Rightarrow P\leq \frac{2(xyz+1)}{xyz+1}=2\) (đpcm)

Dấu "=" xảy ra khi \((x,y,z)=(1,1,0)\)

8 tháng 1 2017

1. Ta có \(1+x^2\ge2x\), \(1+y^2\ge2y\), \(1+z^2\ge2z\)

Suy ra \(P=\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

Chọn D. \(P\le\frac{1}{2}\)

9 tháng 1 2017

2. a) Áp dụng BĐT Bunhiacopxki, ta có

\(\left(\frac{1}{x}+\frac{4}{y}\right)\left(x+y\right)\ge\left[\left(\sqrt{\frac{1}{x}.x}\right)^2+\left(\sqrt{\frac{4}{y}.y}\right)^2\right]=\left(1^2+2^2\right)\)

\(\Rightarrow\frac{1}{x}+\frac{4}{y}\ge1\)

Đẳng thức xảy ra khi \(\left\{\begin{matrix}\frac{1}{x^2}=\frac{4}{y^2}\\x+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}x=\frac{10}{3}\\y=\frac{5}{3}\end{matrix}\right.\)