\(^4\sqrt{a}\) với a ≥ 0

2)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

1) \(ab^4\sqrt{a}=\sqrt{\left(ab^4\right)^2a}=\sqrt{a^2b^8a}=\sqrt{a^3b^8}\)

2) \(-2ab^2\sqrt{5a}=-\sqrt{\left(-2ab^2\right)^25a}=\sqrt{4a^2b^45a}\)

\(\sqrt{20a^3b^4}\)

20 tháng 6 2017

sửa bài 2: \(=\sqrt{4a^2b^45a}=\sqrt{20a^3b^4}\)

p/s: quên k viết dấu =

An Sơ Hạ

19 tháng 6 2017

a) = \(4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+\sqrt{5}=\sqrt{3}\cdot\left(4+3\right)-\sqrt{5}\cdot\left(3-1\right)=7\sqrt{3}-2\sqrt{5}\)

19 tháng 6 2017

b) = \(2a^2b\sqrt{7b}\)

c) = \(6ab^2\sqrt{2}\)

17 tháng 8 2020

a) \(\sqrt{27x^2}=\sqrt{3.\left(3x\right)^2}=\left|3x\right|.\sqrt{3}=3x\sqrt{3}\left(x>0\right)\)

b) \(\sqrt{8xy^2}=\left|y\right|.2\sqrt{2x}=-2y\sqrt{2x}\left(x\ge0,y\le0\right)\)

1) \(x\sqrt{13}=\sqrt{13x^2}\left(x\ge0\right)\)

2) \(x\sqrt{-15x}=-\left|x\right|\sqrt{15x}=-\sqrt{15x^3}\left(x< 0\right)\)

3) \(x\sqrt{2}=-\left|x\right|\sqrt{2}=-\sqrt{2x^2}\left(x\le0\right)\)

3 tháng 8 2018

a)Ta có:  \(2\sqrt{5}< 5\sqrt{2}\)\(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)

\(5\sqrt{2}=\sqrt{5^2.2}=\sqrt{50}\)

Vì \(\sqrt{20}< \sqrt{50}\)

Nên \(2\sqrt{5}< 5\sqrt{2}\)

b)Ta có: \(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)

\(4\sqrt{11}=\sqrt{4^2.11}=\sqrt{176}\)

Vì \(\sqrt{117}< \sqrt{176}\)

Nên \(3\sqrt{13}< 4\sqrt{11}\)

c) Ta có: \(\frac{3}{4}.\sqrt{7}=\sqrt{\left(\frac{3}{4}\right)^2.7}=\sqrt{\frac{63}{16}}\)

\(\frac{2}{5}.\sqrt{5}=\sqrt{\left(\frac{2}{5}\right)^2.5}=\sqrt{\frac{4}{5}}\)

Vì \(\sqrt{\frac{63}{16}}>1\)

\(\sqrt{\frac{4}{5}}< 1\)

Nên \(\sqrt{\frac{63}{16}}>\sqrt{\frac{4}{5}}\)

Vậy \(\frac{3}{4}.\sqrt{7}>\frac{2}{5}.\sqrt{5}\)

a: \(=\sqrt{4\cdot a^4b^2\cdot7}=2a^2b\sqrt{7}\left(b>=0\right)\)

b: \(=\sqrt{36\cdot b^4\cdot a^2\cdot2}=-6ab^2\sqrt{2}\)

23 tháng 6 2018

d) \(\dfrac{1}{3}\sqrt{225a^2}=\dfrac{1}{3}\sqrt{\left(15a\right)^2}=\dfrac{1}{3}\left|15a\right|=\left|5a\right|\)

\(\Rightarrow\left[{}\begin{matrix}a>0\Rightarrow d=5a\\a< 0\Rightarrow d=-5a\end{matrix}\right.\)

23 tháng 6 2018

Giải:

a) \(\sqrt{49.360}\)

\(=\sqrt{7^2.3^2.2^2.10}\)

\(=7.3.2\sqrt{10}\)

\(=42\sqrt{10}\)

Vậy ...

b) \(-\sqrt{500.162}\)

\(=-\sqrt{10^2.5.9^2.2}\)

\(=-10.9\sqrt{10}\)

\(=-90\sqrt{10}\)

Vậy ...

c) \(\sqrt{125a^2}\)

\(=\sqrt{5^2.5.a^2}\)

\(=\sqrt{5^2.5.\left(-a\right)^2}\)

\(=-5a\sqrt{5}\)

Vậy ...

d) \(\dfrac{1}{3}\sqrt{225.a^2}\)

\(=\dfrac{1}{3}\sqrt{15^2.a^2}\)

\(=\dfrac{1}{3}.15.a^2\)

\(=5a^2\)

Vậy ...

AH
Akai Haruma
Giáo viên
7 tháng 10 2020

Lời giải:

\(\sqrt{\frac{(1+\sqrt{2})^3}{27}}=\sqrt{\frac{(1+\sqrt{2})^3}{3^3}}=\sqrt{\frac{3(1+\sqrt{2})^3}{3^4}}\)

\(=\frac{(1+\sqrt{2})\sqrt{3+3\sqrt{2}}}{9}\)

\(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{(ab)^2(\frac{1}{a}+\frac{1}{b})}=\sqrt{ab^2+a^2b}\)

19 tháng 7 2020

a) \(\sqrt{49.360}=\sqrt{7^2.6^2.10}=7.6\sqrt{10}=42\sqrt{10}\)

b)\(\sqrt{125a^2}=\sqrt{5^2.5.a^2}=5.\left|a\right|\sqrt{5}=-5a\sqrt{5}\) ( vì a<0)

c)\(-\sqrt{500.162}=-\sqrt{10^2.5.9^2.2}=-10.9\sqrt{5.2}=-90\sqrt{10}\)

d) \(\frac{1}{3}\sqrt{225a^2}=\frac{1}{3}\sqrt{15^2.a^2}=\frac{1}{3}.15.\left|a\right|=\frac{15a}{3}\) ( a>0)

14 tháng 6 2017

a )\(x\sqrt{7}\)

b )\(-2y\sqrt{2}\)

c )\(5x\sqrt{x}\)

d)\(4y^2\sqrt{3}\)