Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)
\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)
\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)
a) Áp dụng BĐT AM-GM ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
b) Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
bạn hãy nhân ở mẫu với biểu thức tương ướng để tạo ra biểu thức liên hợp , là HĐT số 3 ạ
a)\(\frac{\sqrt{63y^3}}{\sqrt{7}y}=\frac{\sqrt{7\cdot3^2\cdot y^2\cdot y}}{\sqrt{7}y}=\frac{\sqrt{7}\cdot\sqrt{3^2}\cdot\sqrt{y^2}\cdot\sqrt{y}}{\sqrt{7}y}=\frac{\sqrt{7}\cdot3\cdot y\cdot\sqrt{y}}{\sqrt{7}y}=3\sqrt{y}\)
b)\(\frac{\sqrt{48x^3}}{\sqrt{3x^5}}=\frac{\sqrt{4^2\cdot3\cdot x^2\cdot x}}{\sqrt{3\cdot x^2\cdot x^3}}=\frac{\sqrt{4^2}\cdot\sqrt{3}\cdot\sqrt{x^3}}{\sqrt{3}\cdot\sqrt{x^2}\cdot\sqrt{x^3}}=\frac{4}{x}\)
c)\(\frac{\sqrt{45mn^2}}{\sqrt{20m}}=\frac{\sqrt{5\cdot3^2\cdot m\cdot n^2}}{\sqrt{5\cdot2^2\cdot m}}=\frac{\sqrt{5}\cdot\sqrt{3^2}\cdot\sqrt{m}\cdot\sqrt{n^2}}{\sqrt{5}\cdot\sqrt{2^2}\cdot\sqrt{m}}=\frac{3\left|n\right|}{2}\)
d)\(\frac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\frac{\sqrt{4^2\cdot a^2\cdot a^2\cdot b^2\cdot b^2\cdot b^2}}{\sqrt{4^2\cdot8\cdot a^2\cdot a^2\cdot a^2\cdot b^2\cdot b^2\cdot b^2}}=\frac{\sqrt{4^2}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}}{\sqrt{4^2}\cdot\sqrt{8}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}}=\frac{4\cdot a^2\cdot b^3}{4\cdot\sqrt{8}\cdot\left|a\right|^3\cdot b^3}=\frac{a^2}{\sqrt{8}\left|a\right|^3}\)
a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)
b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)
=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)
\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)
\(\frac{\sqrt{63y^3}}{7y}=\frac{\sqrt{9.7.y^2.y}}{7y}=\frac{3y\sqrt{7y}}{7y}=\frac{3\sqrt{7y}}{7}=\frac{3\sqrt{y}}{\sqrt{7}}=3.\sqrt{\frac{y}{7}}\) với y > 0