K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\left(\sin100^0+\sin80^0\right)+\left(\cos16^0+\cos164^0\right)=1\)

1 tháng 5 2022

Chọn D 

1 tháng 5 2022

D

25 tháng 2 2018

Chọn C.

Ta có: 

A = sin( a-160) .cos( a + 140) – sin( a + 140) .cos(a - 160) = sin[ ( a - 170) – (a + 130) ] = sin( -300) = -0,5.

NV
5 tháng 4 2021

Có thể coi biểu thức này không thể đơn giản được nữa (bởi vì biểu thức sau khi biến đổi cũng cồng kềnh không kém gì biểu thức ban đầu)

Chắc bạn ghi đề bài không đúng

\(A=\cos\left(\text{π}-\dfrac{x}{2}\right)-\sin\left(\text{π}-x\right)\)

\(=\sin x+\sin x=2\cdot\sin x\)

\(B=\cos\left(2\text{π}+\dfrac{\text{π}}{2}-x\right)+\sin\left(4\text{π}+\dfrac{\text{π}}{2}-x\right)-\cos\left(6\text{π}+\dfrac{3}{2}\text{π}+x\right)-\sin\left(16\text{π}+\dfrac{3}{2}\text{π}+x\right)\)

\(=\sin x+\cos x-\cos\left(\dfrac{3}{2}\text{π}+x\right)-\sin\left(\dfrac{3}{2}\text{π}+x\right)\)

\(=\sin x+\cos x-\cos\left(\text{π}+\dfrac{\text{π}}{2}+x\right)-\sin\left(\text{π}+\dfrac{\text{π}}{2}+x\right)\)

\(=\cos x+\sin x+\cos\left(\dfrac{1}{2}\text{π}+x\right)+\sin\left(\dfrac{1}{2}\text{π}+x\right)\)

\(=\cos x+\sin x-\sin x+\cos x=2\cos x\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:  \(\left\{ \begin{array}{l}\sin {100^o} = \sin \left( {{{180}^o} - {{80}^o}} \right) = \sin {80^o}\\\cos {164^o} = \cos \left( {{{180}^o} - {{16}^o}} \right) =  - \cos {16^o}\end{array} \right.\)

\( \Rightarrow \sin {100^o} + \sin {80^o} + \cos {16^o} + \cos {164^o}\)\( = \sin {80^o} + \sin {80^o} + \cos {16^o}-\cos {16^o}\)\( = 2\sin {80^o}.\)

b) 

Ta có:

\(\left\{ \begin{array}{l}\sin \left( {{{180}^o} - \alpha } \right) = \sin \alpha \\\cos \left( {{{180}^o} - \alpha } \right) =  - \cos \alpha \\\tan \left( {{{180}^o} - \alpha } \right) =  - \tan \alpha \\\cot \left( {{{180}^o} - \alpha } \right) =  - \cot \alpha \end{array} \right.\quad ({0^o} < \alpha  < {90^o})\)\( \Rightarrow 2\sin \left( {{{180}^o} - \alpha } \right).\cot \alpha  - \cos \left( {{{180}^o} - \alpha } \right).\tan \alpha .\cot \left( {{{180}^o} - \alpha } \right)\) \( = 2\sin \alpha .\cot \alpha  - \left( { - \cos \alpha } \right).\tan \alpha .\left( { - \cot \alpha } \right)\)\( = 2\sin \alpha .\cot \alpha  - \cos \alpha .\tan \alpha .\cot \alpha \)

\( = 2\sin \alpha .\frac{{\cos \alpha }}{{\sin \alpha }} - \cos \alpha .\left( {\tan \alpha .\cot \alpha } \right)\)\( = 2\cos \alpha  - \cos \alpha .1 = \cos \alpha .\)

NV
24 tháng 4 2020

\(\frac{cos^2x-sin^2x}{cot^2x-tan^2x}-cos^2x=\frac{cos^2x-sin^2x}{\frac{cos^2x}{sin^2x}-\frac{sin^2x}{cos^2x}}-cos^2x\)

\(=\frac{cos^2x.sin^2x\left(cos^2x-sin^2x\right)}{cos^4x-sin^4x}-cos^2x=\frac{cos^2x.sin^2x\left(cos^2x-sin^2x\right)}{\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)}-cos^2x\)

\(=cos^2x.sin^2x-cos^2x=cos^2x\left(sin^2x-1\right)\)

\(=cos^2x.\left(-cos^2x\right)=-cos^4x\)

NV
7 tháng 6 2020

\(\frac{1-cosa}{1-cos^2a}-\frac{1}{1+cosa}=\frac{1-cosa}{\left(1-cosa\right)\left(1+cosa\right)}-\frac{1}{1+cosa}=\frac{1}{1+cosa}-\frac{1}{1+cosa}=0\)

\(\frac{1-sin^2a.cos^2a}{cos^2a}-cos^2a=\frac{1}{cos^2a}-\frac{sin^2a.cos^2a}{cos^2a}-cos^2a\)

\(=\frac{1}{cos^2a}-\left(sin^2a+cos^2a\right)=\frac{1}{cos^2a}-1\)

\(=\frac{1-cos^2a}{cos^2a}=\frac{sin^2a}{cos^2a}=tan^2a\)

NV
11 tháng 4 2019

\(P=\frac{1-sin^2x.cos^2x}{cos^2x}-cos^2x=\frac{1}{cos^2x}-sin^2x-cos^2x\)

\(=1+tan^2x-\left(sin^2x+cos^2x\right)=1+tan^2x-1=tan^2x\)

\(M=\frac{2cos^2x-1}{sinx+cosx}=\frac{2cos^2x-\left(sin^2x+cos^2x\right)}{sinx+cosx}=\frac{cos^2x-sin^2x}{sinx+cosx}\)

\(\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}=cosx-sinx\)

27 tháng 3 2022

quá đúng

29 tháng 3 2022

1234567890-01234567890-=qưertyuiop[]\';;lkjhfgdsazxcvbnm,./\'l;[]7894561230.+-