K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

ta có : \(sin136^0=sin\left(180-136\right)^0=sin44^0\left(đpcm\right)\)

ta có : \(cos136^0=-cos\left(180-136\right)^0=-cos44^0\left(đpcm\right)\)

NV
19 tháng 2 2020

\(sina\sqrt{1+\frac{sin^2a}{cos^2a}}=sina\sqrt{\frac{cos^2a+sin^2a}{cos^2a}}=\frac{sina}{\left|cosa\right|}=\pm tana\)

\(\frac{1-cos^2x}{1-sin^2x}+tanx.cotx=\frac{sin^2x}{cos^2x}+\frac{sinx}{cosx}.\frac{cosx}{sinx}=tan^2x+1=\frac{1}{cos^2x}\)

\(\frac{1-4sin^2xcos^2x}{\left(sinx+cosx\right)^2}=\frac{\left(1-2sinx.cosx\right)\left(1+2sinx.cosx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(1-sin2x\right)\left(1+2sinx.cosx\right)}{1+2sinx.cosx}=1-2sinx\)

\(sin\left(90-x\right)+cos\left(180-x\right)+sin^2x\left(1+tan^2x\right)-tan^2x\)

\(=cosx-cosx+sin^2x.\frac{1}{cos^2x}-tan^2x=tan^2x-tan^2x=0\)

1 tháng 5 2018

\(\sin^4x.\sin^2x+\cos^4x.\cos^2x-\left(\sin^4x+\cos^4x+\dfrac{1}{2}\sin^4x+\dfrac{1}{2}\cos^4x-\dfrac{3}{2}\right)-1=-\sin^4x.\left(1-\sin^2x\right)-cos^4x.\left(1-\cos^2x\right)-\dfrac{1}{2}\left(\sin^4x+\cos^4x\right)+\dfrac{1}{2}=-\left(\sin^4x.\cos^2x+\cos^4x.\sin^2x\right)-\dfrac{1}{2}\left(\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x\right)+\dfrac{1}{2}=-\left(\sin^2x.\cos^2x.\left(\sin^2x+\cos^2x\right)\right)-\dfrac{1}{2}.\left(1-2\sin^2x.\cos^2x\right)+\dfrac{1}{2}=-\sin^2x.\cos^2x+\sin^2x.\cos^2x-\dfrac{1}{2}+\dfrac{1}{2}=0\)

Sửa đề: \(2\cdot sin\left(180-a\right)\cdot cota-cos\left(180-a\right)\cdot tana+cot\left(180-a\right)\)

\(=2\cdot sina\cdot cota+cosa\cdot tana+\dfrac{cos\left(180-a\right)}{sin\left(180-a\right)}\)

\(=2\cdot sina\cdot\dfrac{cosa}{sina}+cosa\cdot\dfrac{sina}{cosa}+\dfrac{-cosa}{sina}\)

\(=2cosa+sina-tana\)

NV
10 tháng 6 2020

\(P=cos20+cos160+cos40+cos140+...+cos80+cos100+cos180\)

\(=2cos90.cos70+2cos90.cos50+...+2cos90.cos10+cos180\)

\(=cos90\left(2cos70+2cos50+...+2cos10\right)+cos180\)

\(=cos180=-1\) (do \(cos90=0\))

NV
19 tháng 6 2020

\(cos\left(360-90-x\right)-3sin\left(360+90-x\right)-sin\left(360+180-x\right)\)

\(=cos\left(90+x\right)-3sin\left(90-x\right)-sin\left(180-x\right)\)

\(=-sinx-3cosx-sinx=-2sinx-3cosx\)

28 tháng 11 2019

132312323123