Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 ( sin 2 α + cos 2 α ) ( sin 4 α + cos 4 α - sin 2 α cos 2 α )
- 3 ( sin 4 α + cos 4 α )
= - sin 4 α - cos 4 α - 2 sin 2 α cos 2 α
= - ( sin 2 α + cos 2 α ) 2 = - 1
A = 4 [ ( sin 2 α + cos 2 α ) 2 - 2 sin 2 α cos 2 α ] - cos4α
= 4 ( 1 - sin 2 2 α / 2 ) - 1 + 2 sin 2 2 α = 3
Đáp án A
s i n 4 α + c o s 4 α = s i n 2 α + c o s 2 α 2 − 2 sin α cos α 2 = 1 2 − 2 1 3 2 = 7 9
\(\frac{4tana\left(1-tan^2a\right)}{\left(1+tan^2a\right)^2}=\frac{4\frac{sina}{cosa}\left(\frac{cos^2a-sin^2a}{cos^2a}\right)}{\left(\frac{sin^2a+cos^2a}{cos^2a}\right)^2}=4sina.cosa.cos2a\)
\(=2sin2a.cos2a=sin4a\)
\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)
\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)
\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)
Giả sử các biểu thức đều xác định:
\(\frac{1+sin^2a}{1-sin^2a}=\frac{1+sin^2a}{cos^2a}=\frac{1}{cos^2a}+tan^2a=1+tan^2a+tan^2a=1+2tan^2a\)
\(tan^2a-sin^2a=sin^2a\left(\frac{1}{cos^2a}-1\right)=sin^2a\left(\frac{1-cos^2a}{cos^2a}\right)=sin^2a.\frac{sin^2a}{cos^2a}=tan^2a.sin^2a\)
\(\frac{cosa}{1+sina}+tana=\frac{cosa\left(1-sina\right)}{\left(1+sina\right)\left(1-sina\right)}+\frac{sina.cosa}{cos^2a}=\frac{cosa-sina.cosa}{1-sin^2a}+\frac{sina.cosa}{cos^2a}\)
\(=\frac{cosa-sina.cosa+sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)
\(\frac{tanx}{sinx}-\frac{sinx}{cotx}=\frac{tanx}{sinx}-sinx.tanx=tanx\left(\frac{1}{sinx}-sinx\right)=\frac{sinx}{cosx}\left(\frac{1-sin^2x}{sinx}\right)=\frac{sinx.cos^2x}{cosx.sinx}=cosx\)
Ta có (sinα + cosα ) 2 = sin 2 α + 2sinαcosα + cos 2 α = 1 + 2sinαcosα
Mặt khác sinα + cosα = m nên sinα + cosα = m ⇔ (sinα + cosα ) 2 = m 2
⇔ sin 2 α + cos 2 α + 2sinαcosα = m 2
⇔ 1 + 2sinαcosα = m 2
⇔ 2sinαcosα = m 2 - 1
Đặt A = |sin4 α - cos 4 α |.
Ta có:
A = | sin 4 α - cos4α |
= |( sin 2 α - cos 2 α )( sin 2 α + cos 2 α )|
=|(sinα + cosα )(sinα - cosα )|
⇒ A 2 = (sinα + cosα ) 2 (sinα - cosα ) 2 = (1 + 2sinxcosx)(1 - 2sinxcosx)
⇒ A 2 = (1 + 2sinxcosx)(1 - 2sinxcosx )
A = cos 6 x + 3 sin 2 x . cos 2 x + 2 sin 4 α . cos 2 x + sin 4 α
= cos 6 x + 3.(1 - cos 2 x ) cos 4 x + 2 sin 4 α . cos 2 x + sin 4 α
= cos 6 x + 3 cos 4 x - 3 cos 6 x + 2. sin 4 α .(1 - sin 2 x ) + sin 4 α= cos 6 x + 3 cos 4 x - 3 cos 6 x + 2 sin 4 α - 2 sin 6 x + sin 4 α
= -2.( cos 6 x + sin 6 x ) + 3 cos 4 x + 3 sin 4 α
= -2.( cos 6 x + sin 6 x ) + 3.( cos 4 x + sin 4 α ) = 1
Vậy biểu thức A không phụ thuộc vào x.
\(\sin^4x.\sin^2x+\cos^4x.\cos^2x-\left(\sin^4x+\cos^4x+\dfrac{1}{2}\sin^4x+\dfrac{1}{2}\cos^4x-\dfrac{3}{2}\right)-1=-\sin^4x.\left(1-\sin^2x\right)-cos^4x.\left(1-\cos^2x\right)-\dfrac{1}{2}\left(\sin^4x+\cos^4x\right)+\dfrac{1}{2}=-\left(\sin^4x.\cos^2x+\cos^4x.\sin^2x\right)-\dfrac{1}{2}\left(\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x\right)+\dfrac{1}{2}=-\left(\sin^2x.\cos^2x.\left(\sin^2x+\cos^2x\right)\right)-\dfrac{1}{2}.\left(1-2\sin^2x.\cos^2x\right)+\dfrac{1}{2}=-\sin^2x.\cos^2x+\sin^2x.\cos^2x-\dfrac{1}{2}+\dfrac{1}{2}=0\)