Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
( 5 2 - 1).P = ( 5 2 – 1).12.( 5 2 + 1)( 5 4 + 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 2 – 1).( 5 2 + 1)( 5 4 + 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 4 - 1)( 5 4 + 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 8 - 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 16 - 1)( 5 16 + 1)
= 12.( 5 32 - 1)
\(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\left(5^{128}-1\right)=2.5^{128}-2\)
c: Ta có: \(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^2-1\right)\left(5^2+1\right)\cdot\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{16}-1\right)\cdot\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{32}-1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{64}-1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{128}-1\right)\)
\(=2\cdot5^{128}-2\)
Ta có: \(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Rightarrow P=\dfrac{24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{5^{32}-1}{2}\)
Bài4:
=>x(x^2+1)=0
>x=0
Bài 5:
=>\(3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
Bài 4:
x^3+x=0
=>x(x^2+1)=0
=>x=0
Bài 5:
\(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2-1-4⋮3n+1\)
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
ai giúp với huhu phần thưởng là 1 cái acc Bang bang cho ai trả lời đúng nếu người đó cần
A = \(\frac{1}{2}.24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^{32}-1\right)\left(5^{32}+1\right)\)
A = \(\frac{1}{2}\left(5^{64}-1\right)\)
\(2A=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=5^{64}-1\)
=> \(A=\frac{5^{64}-1}{2}\)