K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Ta có:

P=12(52+1)(54+1)(58+1)(516+1)

P=(52-1)(52+1)(54+1)(58+1)(516+1):2

P=(54-1)(54+1)(58+1)(516+1):2

P=(58-1)(58+1)(516+1):2

P=(516-1)(516+1):2

P=(532-1):2

1 tháng 9 2016

\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)=\frac{5^{32}-1}{2}\)

8 tháng 11 2018

Ta có:

( 5 2 - 1).P = ( 5 2  – 1).12.( 5 2  + 1)( 5 4  + 1)( 5 8  + 1)( 5 16  + 1)

= 12.(  5 2  – 1).( 5 2  + 1)( 5 4 + 1)( 5 8  + 1)( 5 16 + 1)

= 12.(  5 4  - 1)(  5 4  + 1)(  5 8  + 1)( 5 16  + 1)

= 12.(  5 8  - 1)(  5 8  + 1)( 5 16  + 1)

= 12.(  5 16  - 1)( 5 16  + 1)

= 12.(  5 32  - 1)

28 tháng 12 2017

Ta có: \(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Rightarrow P=\dfrac{24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)

\(\Rightarrow P=\dfrac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)

\(\Rightarrow P=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)

\(\Rightarrow P=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)

\(\Rightarrow P=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{2}\)

\(\Rightarrow P=\dfrac{5^{32}-1}{2}\)

9 tháng 12 2021

(52-1)(52+1) lại biến mất khi đem xuống z ạ

31 tháng 8 2021

\(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\left(5^{128}-1\right)=2.5^{128}-2\)

 

c: Ta có: \(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^2-1\right)\left(5^2+1\right)\cdot\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^{16}-1\right)\cdot\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^{32}-1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^{64}-1\right)\left(5^{64}+1\right)\)

\(=2\cdot\left(5^{128}-1\right)\)

\(=2\cdot5^{128}-2\)

20 tháng 10 2022

Bài4:

=>x(x^2+1)=0

>x=0

Bài 5: 

=>\(3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)

10 tháng 6 2016

P=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)

1/2P=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)

1/2P=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)

1/2P=(5^4-1)(5^4+1)(5^8+1)(5^16+1)

1/2P=(5^8-1)(5^8+1)(5^16+1)

1/2P=(5^16-1)(5^16+1)

1/2P=5^32-1

P=(5^32-1):1/2=2(5^32-1)

10 tháng 6 2016

\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\Rightarrow2P=5^{32}-1\Rightarrow P=\frac{5^{32}-1}{2}\)

25 tháng 10 2022

Bài 4:

x^3+x=0

=>x(x^2+1)=0

=>x=0

Bài 5:

\(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2-1-4⋮3n+1\)

=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)

17 tháng 6 2016

(a+b+c)3=(a+b)3+3(a+b)2c+3(a+b)c2+c3

=a3+b3+3ab.(a+b)+3(a+b)2c+3(a+b)c2+c3

=a3+b3+c3+3(a+b)(ab+ac+bc+c2)

=a3+b3+c3+3(a+b)[a.(b+c)+c.(b+c)]

=a3+b3+c3+3(a+b)(b+c)(c+a) 

=>dpcm

17 tháng 6 2016

 

P=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)

=>2P=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)

=(52-1)(52+1)(54+1)(58+1)(516+1)

=(54-1)(54+1)(58+1)(516+1)

=(58-1)(58+1)(516+1)

=(516-1)(516+1)

=532-1

==>P=(532-1)/2

 

 

11 tháng 8 2017

\(C=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{32}-1\right)\)

\(=\frac{5^{32}-1}{2}\)

11 tháng 8 2017

Đinh Đức Hùng lấy 52 -1 ở đâu đấy

15 tháng 5 2017

đặt A = (2 + 1)(22 + 1)...(2256 + 1).

khi đó (2 - 1)A = (2 -1)(2 + 1)(22 + 1)...(2256 + 1)

suy ra A = 2257 - 1 (dùng hiệu hai bình phương).

nên biểu thức đã cho là A + 1 = 2257.