Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
( 5 2 - 1).P = ( 5 2 – 1).12.( 5 2 + 1)( 5 4 + 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 2 – 1).( 5 2 + 1)( 5 4 + 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 4 - 1)( 5 4 + 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 8 - 1)( 5 8 + 1)( 5 16 + 1)
= 12.( 5 16 - 1)( 5 16 + 1)
= 12.( 5 32 - 1)
Ta có: \(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Rightarrow P=\dfrac{24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{2}\)
\(\Rightarrow P=\dfrac{5^{32}-1}{2}\)
\(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\left(5^{128}-1\right)=2.5^{128}-2\)
c: Ta có: \(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^2-1\right)\left(5^2+1\right)\cdot\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{16}-1\right)\cdot\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{32}-1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{64}-1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{128}-1\right)\)
\(=2\cdot5^{128}-2\)
Bài4:
=>x(x^2+1)=0
>x=0
Bài 5:
=>\(3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
P=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)
1/2P=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)
1/2P=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)
1/2P=(5^4-1)(5^4+1)(5^8+1)(5^16+1)
1/2P=(5^8-1)(5^8+1)(5^16+1)
1/2P=(5^16-1)(5^16+1)
1/2P=5^32-1
P=(5^32-1):1/2=2(5^32-1)
\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\Rightarrow2P=5^{32}-1\Rightarrow P=\frac{5^{32}-1}{2}\)
Bài 4:
x^3+x=0
=>x(x^2+1)=0
=>x=0
Bài 5:
\(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2-1-4⋮3n+1\)
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
(a+b+c)3=(a+b)3+3(a+b)2c+3(a+b)c2+c3
=a3+b3+3ab.(a+b)+3(a+b)2c+3(a+b)c2+c3
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)[a.(b+c)+c.(b+c)]
=a3+b3+c3+3(a+b)(b+c)(c+a)
=>dpcm
P=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=>2P=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(52-1)(52+1)(54+1)(58+1)(516+1)
=(54-1)(54+1)(58+1)(516+1)
=(58-1)(58+1)(516+1)
=(516-1)(516+1)
=532-1
==>P=(532-1)/2
\(C=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{32}-1\right)\)
\(=\frac{5^{32}-1}{2}\)
đặt A = (2 + 1)(22 + 1)...(2256 + 1).
khi đó (2 - 1)A = (2 -1)(2 + 1)(22 + 1)...(2256 + 1)
suy ra A = 2257 - 1 (dùng hiệu hai bình phương).
nên biểu thức đã cho là A + 1 = 2257.
Ta có:
P=12(52+1)(54+1)(58+1)(516+1)
P=(52-1)(52+1)(54+1)(58+1)(516+1):2
P=(54-1)(54+1)(58+1)(516+1):2
P=(58-1)(58+1)(516+1):2
P=(516-1)(516+1):2
P=(532-1):2
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)=\frac{5^{32}-1}{2}\)