Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình 3 x 2 + (m + 1)x + 4 = 0 có nghiệm kép khi và chỉ khi ∆ = 0
Ta có : ∆ = m + 1 2 – 4.3.4 = m 2 + 2m + 1 – 48 = m 2 + 2m – 47
∆ = 0 ⇔ m 2 + 2m – 47 = 0
Giải phương trình m 2 + 2m – 47 = 0. Ta có:
∆ m = 2 2 – 4.1.(-47) = 4 + 188 = 192 > 0
Vậy với m = 4 3 – 1 hoặc m = -1 - 4 3 thì phương trình đã cho có nghiệm kép.
m x 2 + (2m – 1)x + m + 2 = 0 (1)
*Nếu m = 0, ta có (1) ⇔ -x + 2 = 0 ⇔ x = 2
*Nếu m ≠ 0 thì (1) có nghiệm khi và chỉ khi ∆ ≥ 0
Ta có : ∆ = 2 m - 1 2 – 4m(m + 2) = 4 m 2 – 4m + 1 – 4 m 2 – 8m
= -12m + 1
∆ ≥ 0 ⇔ -12m + 1 ≥ 0 ⇔ m ≤ 1/12
Vậy khi m ≤ 1/12 thì phương trình đã cho có nghiệm.
Giải phương trình (1) theo m :
Phương trình m x 2 – 2(m – 1)x + 2 = 0 có nghiệm kép khi và chỉ khi m ≠ 0 và Δ = 0
Ta có: ∆ = - 2 m - 1 2 – 4.m.2 = 4( m 2 – 2m + 1) – 8m
= 4( m 2 – 4m + 1)
∆ = 0 ⇔ 4( m 2 – 4m + 1) = 0 ⇔ m 2 – 4m + 1 = 0
Giải phương trình m 2 – 4m + 1 = 0. Ta có:
∆ m = - 4 2 – 4.1.1 = 16 – 4 = 12 > 0
Vậy với m = 2 + 3 hoặc m = 2 - 3 thì phương trình đã cho có nghiệm kép.
2 x 2 – (4m + 3)x + 2 m 2 – 1 = 0 (2)
Phương trình (2) có nghiệm khi và chỉ khi ∆ ≥ 0
Ta có: ∆ = - 4 m + 3 2 – 4.2(2 m 2 – 1)
= 16 m 2 + 24m + 9 – 16 m 2 + 8 = 24m + 17
∆ ≥ 0 ⇔ 24m + 17 ≥ 0 ⇔ m ≥ -17/24
Vậy khi m ≥ -17/24 thì phương trình đã cho có nghiệm.
Giải phương trình (2) theo m:
\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)
\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)
\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)
1.
xét delta có
25 -4(-m-3)
= 25 + 4m + 12
= 4m + 37
để phương trình có nghiệm kép thì delta = 0
=> 4m + 37 = 0 => m = \(\dfrac{-37}{4}\)
2.
a) xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có nghiệm kép thì delta = 0
=> -4m + 37 = 0
=> m = \(\dfrac{37}{4}\)
b)
xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có 2 nghiệm phân biệt thì delta > 0
=> -4m + 37 > 0
=> m < \(\dfrac{37}{4}\)
Để phương trình trên có nghiệm kép khi \(\Delta=0\)
\(\Delta=\left(4m-4\right)^2-4.\left(-8\right).m=16m^2-32m+16+32m\)
\(=16m^2+16=0\)
\(\Leftrightarrow16\left(m^2+1\right)=0\Leftrightarrow m^2+1>0\)
Vậy ko có m để phương trình trên có nghiệm kép