K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Ta có nhận xét: trong cùng một bảng điều tra; khi 2 giá trị có tần số bằng  nhau thì tần suất của chúng cũng bằng nhau và ngược lại

Ta thấy; lớp thứ 5 và lớp thứ 2 có cùng tần suất nên tần số của chúng là bằng nhau.

Do đó;  số cần tìm là : 8

Chọn C.

27 tháng 7 2017

Vì A\(\cap\)B nên cả A và B đều chứa A,B={0;1;2;3;4}

Vì A\B nên {-3;-2} chỉ \(\in\)A mà \(\notin\) B

Vì B\A nên {6;9;10} chỉ \(\in\) B mà \(\notin\) A

Vậy: A={-3;-2;0;1;2;3;4}

B={0;1;2;3;4;6;9;10}

10 tháng 4 2017

Lời giải

Parabol nhận trục tung là trục đối xứng

(điểm thấp nhất thuộc đồ thị có tọa độ A(4,ya)

\(y\left(4\right)=-\dfrac{1}{2}.4^2=-8\)

Vậy chiều cao cổng là 8m

30 tháng 4 2021

Ta có : \(0< \alpha< \dfrac{\pi}{2}\)

=> \(\sin\alpha>0,\cos\alpha>\text{0},\tan\alpha>\text{0},\cot\alpha>\text{0}\)

a, Ta có : \(\sin\left(\alpha-\pi\right)=-\sin\left(\pi-\alpha\right)=-\left[-\sin\left(\alpha\right)\right]=\sin\alpha\)

=> \(sin\left(\alpha-\pi\right)>\text{0}\)

b, \(\cos\left(\dfrac{3\pi}{2}-\alpha\right)=\cos\left(\pi+\dfrac{\pi}{2}-\alpha\right)=-\cos\left(\dfrac{\pi}{2}-\alpha\right)=-sin\alpha\)

=> \(\cos\left(\dfrac{3\pi}{2}-\alpha\right)< \text{0}\)

 

30 tháng 4 2021

c, \(tan\left(\alpha+\pi\right)=tan\alpha\)

=> \(tan\left(\alpha+\pi\right)>\text{0}\)

d, \(cot\left(\alpha+\dfrac{\pi}{2}\right)=-tan\alpha\)

=> \(cot\left(\alpha+\dfrac{\pi}{2}\right)< \text{0}\)

3 tháng 6 2017

C1:

\(A=\dfrac{10^{50}+2}{10^{50}-1}=\dfrac{10^{50}-1}{10^{50}-1}+\dfrac{3}{10^{50}-1}=1+\dfrac{3}{10^{50}-1}\\ B=\dfrac{10^{50}}{10^{50}-3}=\dfrac{10^{50}-3}{10^{50}-3}+\dfrac{3}{10^{50}-3}=1+\dfrac{3}{10^{50}-3}\\ \text{Vì }10^{50}-3< 10^{50}-1\Rightarrow\dfrac{3}{10^{50}-3}>\dfrac{3}{10^{50}-1}\Rightarrow1+\dfrac{3}{10^{50}-3}>1+\dfrac{3}{10^{50}-1}\Leftrightarrow B>A\)

Vậy \(B>A\)

C2: Áp dụng \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\left(n>0\right)\)

Dễ thấy

\(B=\dfrac{10^{50}}{10^{50}-3}>1\\ \Rightarrow B=\dfrac{10^{50}}{10^{50}-3}>\dfrac{10^{50}+2}{10^{50}-3+2}=\dfrac{10^{50}+2}{10^{50}-1}=A\)

Vậy \(B>A\)

3 tháng 5 2016

c)

I)

\(\frac{1}{6},\frac{1}{3},\frac{1}{2},\frac{2}{3},...\)

Quy đồng:

\(\frac{1}{6},\frac{2}{6},\frac{3}{6},\frac{4}{6},...\)

=> Phân số tiếp theo: \(\frac{5}{6}\)

II)

\(\frac{1}{8},\frac{5}{24},\frac{7}{24},...\)

Quy đồng: \(\frac{3}{24},\frac{5}{24},\frac{7}{24},...\)

=> Phân số tiếp theo: \(\frac{9}{24}=\frac{3}{8}\)

23 tháng 9 2017

a) ta có :

\(\Delta'=1^2-\left(-1-m\right)\left(m^2-1\right)=1-\left(-m^2+1-m^3+m\right)=1+m^2-1+m^3-m=m^3+m^2-m=m\left(m^2+m-1\right)\)để phương trình có nghiệm thì \(\Delta\ge0\)

hay \(m\left(m^2+m-1\right)\ge0\)

=> \(\left\{{}\begin{matrix}m\ge0\\m^2+m-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m+\dfrac{1}{2}\ge\\m+\dfrac{1}{2}\le-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\dfrac{\sqrt{5}}{2}}\)

11 tháng 4 2017

ta thấy:\(\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\)

> áp dụng bđt cosi: 1+b2>=2b

>\(a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)

cminh tương tự với \(\dfrac{b}{1+c^2};\dfrac{c}{1+b^2}\)

cộng lần lượt 2 vế ta vừa cminh

>bthức tương đương với: a+b+c-\(\dfrac{ab+bc+ca}{2}\ge3-\dfrac{3}{2}=\dfrac{3}{2}\) đpcminh

(vì (a+b+c)2>=3(ab+bc+ca) hay 32>=3(ab+bc+ca)

> ab+bc+ca<=3)

29 tháng 4 2017

bài này lop6, bn ghi lop10 k ai làm đâu vì mắc cỡ

30 tháng 4 2017

Mik ghi lộn á

lớp 7 á

30 tháng 4 2017

Hỏi đáp Toán

30 tháng 4 2017

bít rùi nhưg cũg cảm ơn nha