K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 4 2019

Nhìn quen quen, có phải nó đây ko bạn?

Câu hỏi của Nguyễn Lê Nhật Linh - Toán lớp 11 | Học trực tuyến

Tìm trong CHTT chứ mình cũng ko nhớ là đã làm rồi :))

28 tháng 4 2019

(b)=b(bc)(ba)f(b)=b(b−c)(b−a)
f(c)=c(ca)(cb)f(c)=c(c−a)(c−b)
Lại có f(a).f(b).f(c)=−abc(ab)2(bc)2(ca)2f(a).f(b).f(c)=−abc(a−b)2(b−c)2(c−a)2
Vì vậy tồn tại 1 trong 3 số đó âm hay phương trình luôn có nghiệm.
Do hệ số A của pt dương
Nên:
a.f(α)<0a.f(α)<0 thì pt luôn có nghiệm thỏa x1<α<x2x1<α<x2

NV
31 tháng 3 2019

Một cách dựa vào hàm số:

Đặt \(VT=f\left(x\right)\)

- Nếu 2 trong 3 số a, b, c bằng nhau hoặc một trong 3 số bằng 0 thì pt hiển nhiên có nghiệm

- Nếu không có bất cứ cặp nào bằng nhau và đều khác 0, do tính đối xứng của \(f\left(x\right)\) , không làm mất tính tổng quát, giả sử \(a>b>c\) ta có:

\(f\left(a\right)=a\left(a-b\right)\left(a-c\right)\)

Do \(\left(a-b\right)\left(a-c\right)>0\Rightarrow f\left(a\right)\) cùng dấu với \(a\) \(\Rightarrow a.f\left(a\right)>0\) (1)

\(f\left(b\right)=b\left(b-c\right)\left(b-a\right)\)

Do \(\left(b-c\right)\left(b-a\right)< 0\Rightarrow b.f\left(b\right)< 0\) (2)

\(f\left(c\right)=c\left(c-a\right)\left(c-b\right)\)

Do \(\left(c-a\right)\left(c-b\right)< 0\Rightarrow c.f\left(c\right)>0\) (3)

- Nếu a, c cùng dấu \(\Rightarrow a;b;c\) cùng dấu \(\Rightarrow ab>0\)

Nhân vế với vế của (1) và (2): \(a.b.f\left(a\right).f\left(b\right)< 0\) \(\Rightarrow f\left(a\right).f\left(b\right)< 0\)

\(\Rightarrow\) Pt có ít nhất 1 nghiệm thuộc \(\left(a;b\right)\)

- Nếu \(a,\) c trái dấu \(\Rightarrow ac< 0\) nhân vế với vế của (1) và (3):

\(ac.f\left(a\right).f\left(c\right)>0\Rightarrow f\left(a\right).f\left(c\right)< 0\)

\(\Rightarrow\) Pt có ít nhất 1 nghiệm thuộc \(\left(a;c\right)\)

Vậy pt đã cho luôn luôn có nghiệm

28 tháng 4 2019

nhở a,b,c<0 s pn ! lm lại nhé

Tham khảo:

undefined

Tham khảo

undefined

NV
5 tháng 4 2020

Bài 1:

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2+2-\sqrt[3]{3x+5}}{x-1}=\lim\limits_{x\rightarrow1}\frac{\frac{x-1}{\sqrt{x+3}+2}-\frac{3\left(x-1\right)}{4+2\sqrt[3]{3x+5}+\sqrt[3]{\left(3x+5\right)^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(\frac{1}{\sqrt{x+3}+2}-\frac{3}{4+2\sqrt[3]{3x+5}+\sqrt[3]{\left(3x+5\right)^2}}\right)=0\)

\(f\left(1\right)=a+1\)

Để hàm số liên tục trên \([-3;+\infty)\Leftrightarrow\) hàm số liên tục tại \(x=1\)

\(\Leftrightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\Rightarrow a+1=0\Rightarrow a=-1\)

Bài 2:

Các hàm số đã cho đều liên tục trên R nên liên tục trên từng khoảng bất kì

a/ Xét \(f\left(x\right)=m\left(x-1\right)^3\left(x+2\right)+2x+3\)

\(f\left(-2\right)=-1\) ; \(f\left(1\right)=5\)

\(\Rightarrow f\left(-2\right).f\left(1\right)< 0;\forall m\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\) với mọi m

b/ \(m\left(sin^3x-cosx\right)=0\)

Nếu \(m=0\) pt có vô số nghiệm (thỏa mãn)

Nếu \(m\ne0\Leftrightarrow f\left(x\right)=sin^3x-cosx=0\)

\(f\left(0\right)=-1\) ; \(f\left(\frac{\pi}{2}\right)=1\)

\(\Rightarrow f\left(0\right).f\left(\frac{\pi}{2}\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\frac{\pi}{2}\right)\)

Phương trình luôn có nghiệm với mọi m

NV
25 tháng 2 2020

Đáp án B, do giới hạn trái tại 0 bằng âm vô cùng, giới hạn phải tại 0 bằng dương vô cùng