K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4 2020

Bài 1:

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2+2-\sqrt[3]{3x+5}}{x-1}=\lim\limits_{x\rightarrow1}\frac{\frac{x-1}{\sqrt{x+3}+2}-\frac{3\left(x-1\right)}{4+2\sqrt[3]{3x+5}+\sqrt[3]{\left(3x+5\right)^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(\frac{1}{\sqrt{x+3}+2}-\frac{3}{4+2\sqrt[3]{3x+5}+\sqrt[3]{\left(3x+5\right)^2}}\right)=0\)

\(f\left(1\right)=a+1\)

Để hàm số liên tục trên \([-3;+\infty)\Leftrightarrow\) hàm số liên tục tại \(x=1\)

\(\Leftrightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\Rightarrow a+1=0\Rightarrow a=-1\)

Bài 2:

Các hàm số đã cho đều liên tục trên R nên liên tục trên từng khoảng bất kì

a/ Xét \(f\left(x\right)=m\left(x-1\right)^3\left(x+2\right)+2x+3\)

\(f\left(-2\right)=-1\) ; \(f\left(1\right)=5\)

\(\Rightarrow f\left(-2\right).f\left(1\right)< 0;\forall m\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\) với mọi m

b/ \(m\left(sin^3x-cosx\right)=0\)

Nếu \(m=0\) pt có vô số nghiệm (thỏa mãn)

Nếu \(m\ne0\Leftrightarrow f\left(x\right)=sin^3x-cosx=0\)

\(f\left(0\right)=-1\) ; \(f\left(\frac{\pi}{2}\right)=1\)

\(\Rightarrow f\left(0\right).f\left(\frac{\pi}{2}\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\frac{\pi}{2}\right)\)

Phương trình luôn có nghiệm với mọi m

NV
2 tháng 1

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{x^3-x^2+2x-2}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^2\left(x-1\right)+2\left(x-1\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2+2\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x^2+2\right)=3\)

\(f\left(1\right)=3.1+m=m+3\)

Hàm số liên tục tại \(x_0=1\) khi và chỉ khi \(\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\)

\(\Rightarrow m+3=3\Rightarrow m=0\)

19 tháng 2 2021

\(f\left(0\right)=2.0+m+1=m+1\)

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[3]{x+1}-1}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x+1-1}{x(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1)}=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)\(f\left(0\right)=\lim\limits_{x\rightarrow0^+}f\left(x\right)\Leftrightarrow m+1=\dfrac{1}{3}\Rightarrow m=-\dfrac{2}{3}\)

NV
26 tháng 2 2021

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{3\left(x-1\right)}{\left(1-x\right)\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4\right)}\)

\(=\lim\limits_{x\rightarrow1^-}\dfrac{-3}{\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4\right)}=-\dfrac{1}{12}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{2m\sqrt{x}+3}{5}=\dfrac{2m+3}{5}\)

Hàm liên tục trên R khi và chỉ khi:

\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\Leftrightarrow\dfrac{2m+3}{5}=-\dfrac{1}{12}\Leftrightarrow m=-\dfrac{41}{24}\)

27 tháng 2 2021

cảm ơn thầy

 

NV
2 tháng 3 2021

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1^+}\dfrac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x+3}+2}=\dfrac{1}{4}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(mx\right)=m\)

Hàm liên tục tại x=1 khi: \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=f\left(1\right)\)

\(\Leftrightarrow m=\dfrac{1}{4}\)

NV
2 tháng 3 2021

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1^+}\dfrac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x+3}+2}=\dfrac{1}{4}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(ax+2\right)=a+2\)

Hàm liên tục tại x=1 khi:

\(a+2=\dfrac{1}{4}\Rightarrow a=-\dfrac{7}{4}\)

NV
13 tháng 3 2020

a/ Với \(x\ne\pm1\) hàm số liên tục

Với \(x=-1\) hàm số gián đoạn

Xét tại \(x=1\)

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{x^2+2x-1}{x^2-1}=\frac{2}{0}=+\infty\ne f\left(1\right)\)

Vậy hàm số gián đoạn tại \(x=1\)

b/ Với \(x\ne2\) hàm số liên tục (ko cần xét tại \(x=1\) do tại \(x=1\Rightarrow f\left(x\right)=2x^2-6\) là hàm đa thức nên hiển nhiên liên tục)

Xét tại \(x=2\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\frac{\left(2-x\right)\left(x^2-3x+1\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2^+}\frac{x^2-3x+1}{1-x}=1\ne f\left(2\right)\)

Vậy hàm số gián đoạn tại \(x=2\) (ko cần xét thêm giới hạn trái tại 2)

NV
16 tháng 4 2022

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{ax+1}-\sqrt[]{1-bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{bx}{1+\sqrt[]{1-bx}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{b}{1+\sqrt[]{1-bx}}\right)=\dfrac{a}{3}+\dfrac{b}{2}\)

Hàm liên tục tại \(x=0\) khi:

\(\dfrac{a}{3}+\dfrac{b}{2}=3a-5b-1\Leftrightarrow8a-11b=3\)

19 tháng 11 2023

Khi \(x\ne1\) thì \(f\left(x\right)=\dfrac{3x^2-3x}{x-1}=\dfrac{3x\left(x-1\right)}{x-1}=3x\) hoàn toàn xác định

nên f(x) liên tục trên các khoảng \(\left(-\infty;1\right);\left(1;+\infty\right)\)(1)

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{3x^2-3x}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{3x\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1}3x=3\cdot1=3\)

\(f\left(1\right)=m\cdot1+1=m+1\)

Để hàm số liên tục trên R thì hàm số cần liên tục trên các khoảng sau: \(\left(-\infty;1\right);\left(1;+\infty\right)\) và liên tục luôn tại x=1(2)

Từ (1),(2) suy ra để hàm số liên tục trên R thì hàm số cần liên tục tại x=1

=>\(f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)\)

=>m+1=3

=>m=2