K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó, đồ thị hàm số có 2 đường tiệm cận ngang là y= 2; y = -2

Vậy đồ thị hàm số đã cho có tất cả 4 đường tiệm cận.

Chọn  D

11 tháng 12 2019

Vì x ≥ -3 và x ≠ -1, nên ta chỉ xét trường hợp x → +∞

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy đồ thị hàm số đã cho có 2 tiệm cận

Chọn C

18 tháng 2 2018

Chọn D

Phương pháp

Nếu  thì y = y 0  là phương trình đường tiệm cận ngang của đồ thị hàm số.

Nếu  thì x =  x 0  là phương trình đường tiệm cận ngang của đồ thị hàm số.

Cách giải:

TXĐ: 

Ta có:  nên x = 1 là tiệm cận đứng của đồ thị hàm số.

nên x = -1 không là tiệm cận đứng của đồ thị hàm số.

Ta có 

=> tiệm cận ngang y = 1

Lại có 

=> tiệm cận ngang y = -1

Đồ thị hàm số y =  x + 1 x 2 - 1 có tất cả 3 tiệm cận đứng và tiệm cận ngang.

2 tháng 12 2017



NV
2 tháng 9 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1+\dfrac{1}{x}}{-\left(m^2+1\right)\sqrt[]{1-\dfrac{4}{x^2}}}=-\dfrac{1}{m^2+1}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{1}{m^2+1}\)

\(\Rightarrow\) ĐTHS có 2 tiệm cận ngang

\(\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{3}{0}=\infty\)

\(\lim\limits_{x\rightarrow-2^-}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{-1}{0}=\infty\)

\(\Rightarrow\) ĐTHS có 2 tiệm cận đứng

Vậy ĐTHS có 4 tiệm cận

4 tháng 9 2021

tại sao nơi chỗ lim\(_{x->2^+}\) và limx->-2-    ở dưới mẫu lại bằng 0 vậy  ạ?

7 tháng 2 2019

Chọn B

Phương pháp:

Xác định tiệm cận theo định nghĩa:

Đường thẳng y = y 0  được gọi là tiệm cận ngang của đồ thị hàm số  nếu một trong hai điều kiện sau được thỏa mãn 

Đường thẳng x = x 0  được gọi là tiệm cận đứng của đồ thị hàm số  nếu một trong bốn điều kiện sau được thỏa mãn 

Cách giải:

Ta có  suy ra đường thẳng y = 1 là TCN của đồ thị hàm số.

Xét phương trình 

 nên đường thẳng x = 2 là TCĐ của đồ thị hàm số.

 nên đường thẳng  là TCĐ của đồ thị hàm số.

Vậy đồ thị hàm số đã cho có ba đường tiệm cận.

12 tháng 3 2019


11 tháng 4 2018

Suy ra đồ thị hàm số có 1 đường TCN y = 0.

Do đó đồ thị hàm số có đúng  2 đường tiệm cận đồ thị hàm số có đứng 1 đường tiệm cận đứng phương trình m x 2   -   2 x   +   4   =   0  có nghiệm kép hoặc có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 2.

Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.

Chọn A

6 tháng 5 2018

Chọn đáp án A.

⇒ y = 1 ; y = 3  là các đường tiệm cận ngang và

12 tháng 8 2018

* Phương trình x 2 - x + 3 = 0  vô nghiệm

Phương trình x 2 - 4 m x - 3 = 0  có a.c < 0

nên phương trình luôn có 2 nghiệm phân biệt.

Suy ra, đồ thị hàm số đã cho có 2 đường TCĐ.

* Lại có: Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó, đồ thị hàm số đã cho có 1 TCN là y = 1.

Vậy đồ thị của hàm số đã cho có tất cả 3 đường tiệm cận.

Chọn C