Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko biết chắc nữa mà hình như bài này ko pải lớp 7 mà là lớp 8
lấy các mẫu thức của 3 phân thức nhân với nhau
Thu gọn đa thức một biến (điền các hệ số vào đa thức thu gọn):
-4x^{3}+6x^{2}-2x+2 -7x^{3}+9x^{2}-7x-6−4x3+6x2−2x+2−7x3+9x2−7x−6
=(=(x^{3}) + (x3)+(x^{2}) + (x2)+(x) + (x)+()).
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
Bài 1 :
Ta có : \(15x^4y^n.\left(-2x^5y^9\right)=30x^9y^{17}\)
=> \(15x^4.\left(-y\right)^n.\left(-2\right).\left(-x\right)^5.\left(-y\right)^9=30\left(-x\right)^9.\left(-y\right)^{17}\)
=> \(30\left(-x\right)^9.\left(-y\right)^{n+9}=30.\left(-x\right)^9\left(-y\right)^{17}\)
=> \(\left(x\right)^9.\left(-y\right)^{n+9}=\left(-x\right)^9\left(-y\right)^{17}\)
=> \(x^9y^{n+9}=x^9y^{17}\)
- TH1 : \(x,y=0\)
=> \(0^{n+9}=0^{17}\) ( Luôn đúng \(\forall n\) )
=> \(n\in R\)
- TH2 : \(x,y\ne0\)
=> \(y^{n+9}=y^{17}\)
=> \(n+9=17\)
=> \(n=8\)
Bạn ghi sai đề nhé chữa thành :
M=\(\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)
Giải
Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
=> M=\(\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)>\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)
=> M>1 (1)
Ta lại có: \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{x}{y+z+t}< \frac{x+y}{x+y+z+t}\)
\(\frac{z}{z+t+x}< \frac{z+y}{x+y+z+t}\)
\(\frac{t}{t+x+y}< \frac{t+z}{x+y+z+t}\)
=> M=\(\frac{x}{x+y+z}=\frac{y}{y+z+t}=\frac{z}{z+t+x}=\frac{t}{t+x+y}\)<
\(\frac{x+t}{x+y+z+t}+\frac{y+x}{x+y+z+t}+\frac{z+y}{x+y+z+t}=\frac{t+z}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)=> M<2 (2)
Từ (1) và (2) => 1<M<2
=> M không phải là số tự nhiên
\(M\left(x\right)=\frac{1}{2}x^3-x^2-3x+3\)
\(N\left(x\right)=\frac{1}{2}x^3+x^2-4x+6\)
\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-x^2-3x+3\right)-\left(\frac{1}{2}x^3+x^2-4x+6\right)\)
\(M\left(x\right)-N\left(x\right)=\frac{1}{2}x^3-x^2-3x+3-\frac{1}{2}x^3-x^2+4x-6\)
\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-\frac{1}{2}x^3\right)+\left(-x^2-x^2\right)+\left(-3x+4x\right)+\left(3-6\right)\)
\(M\left(x\right)-N\left(x\right)=-2x^2+x-3\)
A(x)=M(x)-N(x)=-2x2+x-3=0
đang suy nghĩ tí làm lại sau :v
a) Ta có: \(Q\left(x\right)=x\cdot\left(\frac{x^2}{2}-\frac{1}{2}+\frac{1}{2}x\right)-\left(\frac{x}{3}-\frac{1}{2}x^4+x^2-\frac{x}{3}\right)\)
\(=\frac{x^3}{2}-\frac{x}{2}+\frac{1}{2}x^2-\frac{x}{3}+\frac{1}{2}x^4-x^2+\frac{x}{3}\)
\(=\frac{1}{2}x^4+\frac{1}{2}x^3-\frac{1}{2}x^2-\frac{1}{2}x\)
b) Thay \(x=-\frac{1}{2}\) vào biểu thức \(Q\left(x\right)=\frac{1}{2}x^4+\frac{1}{2}x^3-\frac{1}{2}x^2-\frac{1}{2}x\), ta được:
\(Q\left(-\frac{1}{2}\right)=\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^4+\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^3-\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^2-\frac{1}{2}\cdot\frac{-1}{2}\)
\(=\frac{1}{2}\cdot\frac{1}{16}-\frac{1}{2}\cdot\frac{1}{8}-\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{4}\)
\(=\frac{1}{32}-\frac{1}{16}-\frac{1}{8}+\frac{1}{4}\)
\(=\frac{3}{32}\)
Vậy: \(Q\left(-\frac{1}{2}\right)=\frac{3}{32}\)