Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Linh ơi câu kiếm ở đau ra lắm đề thế
Share cho mink một ít dc ko?
Do 3x+1 \(⋮\)y và 3y+1\(⋮\) x
nên (3x+1)(3y+1) \(⋮\)xy
=>9xy+3x+3y+1 \(⋮\)xy
mà 9xy \(⋮\)xy
=>3x+3y+1 \(⋮\)xy
=>\(\frac{3x}{y}\) + 3 +y\(\frac{1}{y}\) chia hết cho x
Do vai trò của x,y như nhau nên giả sử
=>\(\frac{x}{y}\le1\)
=>\(\frac{3x}{y}\le3\)
y>1 =>\(\frac{1}{y}< 1\)
=>\(\frac{3x}{y}+3+\frac{1}{y}< 7\)
=>1<x <7
=>x = 2,3,4,5,6
Thay x vào 3x+1\(⋮\) y và 3y+1\(⋮\) x
Xl bn nha
Chỗ
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.
Ta chia làm 2 trường hợp:
- TH1: p = 3k + 1
=> 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số.
=> TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.
- TH2: p = 3k + 2
=> 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.
=> TH này được chọn vì đúng theo yêu cầu của đề bài.
=> 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.
Vậy 4p + 1 là hợp số (ĐPCM).
+) Với p=3k+1
Ta có : 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số)
=>\(p\ne3k+1\)
+) Với p=3k+2
Ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5
Vì \(p\ne3k+1\) nên ta chộn trường hợp này
=> 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9=3(4k+3) (chia hết cho 3)
Vậy 4p+1 là hợp số
=>đpcm
a) Ta có công thức k(k+1).(2.k+1)/6
=> 99(99+1).(2.99+1)/6=328350
b) Ta có công thức (k(k+1)/2)^2
=>(100(100+1)/2)^2=25502500
A B C E F 1 2 1 2 K I
Giải:
Gọi K là giao điểm giữa CF và BE
Kẻ tia phân giác KI của \(\widehat{BKC}\)
\(\Rightarrow\widehat{BKI}=\widehat{CKI}\)
Trong \(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow60^o+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=120^o\)
\(\Rightarrow\frac{1}{2}\left(\widehat{B}+\widehat{C}\right)=\frac{1}{2}.120^o\)
\(\Rightarrow\frac{1}{2}\widehat{B}+\frac{1}{2}\widehat{C}=60^o\)
\(\Rightarrow\widehat{B_2}+\widehat{C_1}=60^o\)
Xét \(\Delta BKC\) có: \(\widehat{BKC}+\widehat{B_2}+\widehat{C_1}=180^o\)
\(\Rightarrow\widehat{BKC}+60^o=180^o\)
\(\Rightarrow\widehat{BKC}=120^o\)
Ta có: \(\widehat{B_2}+\widehat{C_1}=\widehat{FKB}\)
\(\Rightarrow\widehat{FKB}=60^o\)
Mà \(\widehat{FKB}=\widehat{EKC}\) ( đối đỉnh )
\(\Rightarrow\widehat{EKC}=60^o\)
Xét \(\Delta FKB,\Delta IKB\) có:
\(\widehat{B_1}=\widehat{B_2}\left(=\frac{1}{2}\widehat{B}\right)\)
BK: cạnh chung
\(\widehat{FKB}=\widehat{IKB}\left(=60^o\right)\)
\(\Rightarrow\Delta FKB=\Delta IKB\left(g-c-g\right)\)
\(\Rightarrow BF=BI\) ( cạnh t/ứng )
Xét \(\Delta EKC,\Delta IKC\) có:
\(\widehat{C_1}=\widehat{C_2}\left(=\frac{1}{2}\widehat{C}\right)\)
KC: cạnh chung
\(\widehat{EKC}=\widehat{IKC}\left(=60^o\right)\)
\(\Rightarrow EC=IC\) ( cạnh t/ứng )
Có: \(BI+IC=BC\)
\(\Rightarrow BF+CE=BC\)
\(\Rightarrowđpcm\)
Ta có hình vẽ sau:
A B C M D N E
a) Xét ΔABM và ΔCDM có:
MB = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> ΔABM = ΔCDM (c.g.c)(đpcm)
b) Vì ΔABM = ΔCDM (ý a)
=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CD (đpcm)
c) +)Vì ΔAB // CD (ý b)
=> \(\widehat{NBM}=\widehat{EDM}\) (so le trong)
Xét ΔMNB và ΔMED có:
\(\widehat{EMD}=\widehat{NMB}\) (đối đỉnh)
MB = MD (gt)
\(\widehat{NBM}=\widehat{EDM}\) (cm trên)
=> ΔMNB = ΔMED (g.c.g)
=> NB = ED(2 cạnh tương ứng) (1)
+) CM tương tự ta có:
ΔMEA = ΔMNC(g.c.g)
=> EA = NC (2 cạnh tương ứng) (2)
Từ (1) và (2)
=> EA = ED => E là trung điểm của AD (đpcm)
á, sao đã tl rồi thế này hả