K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chế nào gips e với ạ bucminh
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.

a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .

  1. Tính \widehat{B}\widehat{C}
  2. Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.

Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

  1. Chứng minh : DB = EC.
  2. Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
  3. Chứng minh rằng : DE // BC.

    Bài 7

    Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

  4. Chứng minh : CD // EB.
  5. Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.

    Bài 8 :

    Cho tam giác ABC vuông tại A có \widehat{B}=60^0. Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

  6. Tam giác ACE đều.
  7. A, E, F thẳng hàng.
3
22 tháng 1 2017

Bài 1:

Xét \(\Delta\)AMB và \(\Delta\)NMC có:

AM = NM (suy từ gt)

\(\widehat{AMB}\) = \(\widehat{NMC}\) (đối đỉnh)

MB = MC (suy từ gt)

=> \(\Delta\)AMB = \(\Delta\)NMC (c.g.c)

b) Vì \(\Delta\)AMB = \(\Delta\)NMC (câu a)

=> \(\widehat{ABM}\) = \(\widehat{NCM}\) (2 góc t/ư)

hay \(\widehat{ABC}\) = \(\widehat{NCB}\) \(\rightarrow\) đpcm

mà 2 góc này ở vị trí so le trong nên AB // CN

hay DB // CN

Ta đc: \(\widehat{BDC}\) + \(\widehat{DCN}\) = 180o (kề bù)

=> 90o + \(\widehat{DCN}\) = 180o

=> \(\widehat{DCN}\) = 90o

c) Vì \(\Delta\)AMB = \(\Delta\)NMC

=> AB = NC (2 cạnh t/ư)

Xét \(\Delta\)ABH và \(\Delta\)IBH có:

BH chung

\(\widehat{AHB}\) = \(\widehat{IHB}\) (= 90o)

AH = IH (gt)

=> \(\Delta\) ABH = \(\Delta\)IBH (c.g.c)

=> AB = IB (2 cạnh t/ư)

mà AB = CN => IB = CN .

24 tháng 1 2017

nhưng từ từ đã, mk có việc tí Tuân Tỉn

29 tháng 1 2017

B C D E 50 A

a)

Tam giác ABC cân tại A có: \(ABC=ACB=90^0-\frac{BAC}{2}=90^0-\frac{50^0}{2}=90^0-25^0=65^0\)

b)

AD = AE (gt)

=> Tam giác ADE cân tại A

=> \(ADE=90^0-\frac{DAE}{2}\)

\(ABC=90^0-\frac{BAC}{2}\) (tam giác ABC cân tại A)

=> ADE = ABC

mà 2 góc này ở vị trí đồng vị

=> DE // BC

4 tháng 10 2017

Vì \(\widehat{BAD}\)+\(\widehat{CDA}\)= 180\(\Rightarrow\)\(\widehat{BAD}\)Và \(\widehat{CDA}\)Là hai góc trong cùng phía bù nhau\(\Rightarrow\)Ax song song với Dy

\(\Rightarrow\)\(\widehat{ABC}\)VÀ \(\widehat{BCD}\)Cũng là hai góc trong cung phía bù nhau\(\Rightarrow\)\(\widehat{BCD}\)=1800-600 =1200

\(\widehat{BCD}\)=1200

4 tháng 10 2017

Gọi đường thẳng cắt Ax và Dy là b 

Theo đề bài ta có b vuông góc vs D , b vuông góc vs A 

Suy ra Ax || dy 

Vì  Ax || dy nên ta có

ABC^ + BCD^ = 180 độ (so le trong)

60* + BCD^ = 180*

         BCD^ = 180* -  60*  

         BCD^ = 120*

Vậy BCD^ = 120*

8 tháng 11 2017

1) \(2x - \frac{3}{4}= \left ( + \frac{2}{3} \right )\)

\(2x = \frac{2}{3}+ \frac{3}{4}\)

\(2x = \frac{17}{12}\)

\(x = \frac{17}{12}: 2\)

x = \(\frac{17}{24}\)

Vậy ...........

2) x5 : x3 = \(\frac{1}{16}\)

\(x^{2}= \frac{1}{16}\)

=> \(x= \frac{1}{14}\) hoặc \(x= - \frac{1}{14}\)

Vậy ........

3) \(\left | x + \frac{1}{3} \right | - 2 = - 1\)

\(\left | x + \frac{1}{3} \right | = 1\)

* \(x + \frac{1}{3} = 1\)

\(x = 1 - \frac{1}{3}\)

\(x = \frac{2}{3}\)

* \(x + \frac{1}{3} = - 1\)

\(x =- 1 - \frac{1}{3}\)

\(x = - \frac{4}{3}\)

Vậy ...........hoặc..............

4) \(\frac{2}{9}x\left (x - 3\tfrac{7}{8} \right )= 0\)

\(\frac{2}{9}x\left (x - \frac{31}{8} \right )= 0\)

<=> \(\begin{bmatrix} \frac{2}{9}x = 0 & & \\ x - \frac{31}{8}= 0 & & \end{bmatrix}\)

\(\Leftrightarrow \begin{bmatrix} x = 0 & & \\ x = \frac{31}{8} & & \end{bmatrix}\)

pn bỏ dấu ngoặc bên phải nhé

Vậy ...............hoặc............

Chúc pn học tốt

8 tháng 11 2017

câu 2 KL 2 giá trị nhé

26 tháng 10 2014

Từ b2 = 122 suy ra 2 số b:

b = 12 hoặc b = -12.

Như vậy ngoài đáp số: a=9, b=12; c=16

Còn có đáp số: a=-9, b=-12; c=-16

 

10 tháng 10 2016

Hỏi rồi mk tự trả lời.......

DD
28 tháng 1 2021

a) Ta có: \(AB^2+AC^2=6^2+8^2=100=10^2=BC^2\)nên theo định lý Pythagore đảo thì tam giác \(ABC\)là tam giác vuông. 

b) \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.6.8=24\left(cm^2\right)\)

c) \(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=6,8\left(cm\right)\)

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=3,6\left(cm\right)\)

\(CH=BC-BH=10-3,6=6,4\left(cm\right)\)

28 tháng 1 2017

Sai đề

2 tháng 2 2017

sai ở chỗ nào bạn bạn chỉ mình với

2 tháng 11 2017

a/ Áp dụng t.c dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{350}{10}=35\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=35\\\dfrac{b}{3}=35\\\dfrac{c}{5}=35\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=70\\b=105\\c=175\end{matrix}\right.\)

Vậy .....

b/ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{3}\\x+\dfrac{1}{2}=-\dfrac{2}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)

Vậy ..

2 tháng 11 2017

2. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{350}{10}=35\\ \Rightarrow\left\{{}\begin{matrix}a=35\cdot2=70\\b=35\cdot3=105\\c=35\cdot5=175\end{matrix}\right.\)

3.

\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{4}{9}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{3}\\x+\dfrac{1}{2}=-\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}-\dfrac{1}{2}\\x=\dfrac{-2}{3}-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{-7}{6}\end{matrix}\right.\)

3 tháng 2 2017

B A C E F

a) xét tam giác ABC có

\(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}\) =180

ACB= 180-BAC-ABC= 180-90-60=30 độ

vì BCE=90\(\Rightarrow\)ACE=90-BCA=90-30=60 độ

vì tam giác ACE có CA = CE nên tam giác ACE cân tại E mà tam giác đó lại có góc ACE=60 độ nên tam giác AEC là tam giác đều

b) FBA= BCA+BAC(góc ngoài)

FBA=30+90=120

vì tam giác BFA có BF=BA nên tam giác BFA là tam giác cân tại B nên BFA = BAF=(180-FBA):2=(180-120):2=30

Ta có FAE = BAC +CAE+BAF=90+60+30=180

vậy ba điểm A,F,E thẳng hàng

cậu tự thêm ký hiệu góc nhá mk làm đúng 100% luôn

3 tháng 2 2017

nhớ tích đúng cho mình nhá