K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 9 2021

c.

\(\Leftrightarrow cos\left(x+12^0\right)+cos\left(90^0-78^0+x\right)=1\)

\(\Leftrightarrow2cos\left(x+12^0\right)=1\)

\(\Leftrightarrow cos\left(x+12^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+12^0=60^0+k360^0\\x+12^0=-60^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=48^0+k360^0\\x=-72^0+k360^0\end{matrix}\right.\)

2.

Do \(-1\le sin\left(3x-27^0\right)\le1\) nên pt có nghiệm khi:

\(\left\{{}\begin{matrix}2m^2+m\ge-1\\2m^2+m\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m+1\ge0\left(luôn-đúng\right)\\2m^2+m-1\le0\end{matrix}\right.\)

\(\Rightarrow-1\le m\le\dfrac{1}{2}\)

NV
20 tháng 9 2021

a.

\(\Rightarrow\left[{}\begin{matrix}x+15^0=arccos\left(\dfrac{2}{5}\right)+k360^0\\x+15^0=-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-15^0+arccos\left(\dfrac{2}{5}\right)+k360^0\\x=-15^0-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

b.

\(2x-10^0=arccot\left(4\right)+k180^0\)

\(\Rightarrow x=5^0+\dfrac{1}{2}arccot\left(4\right)+k90^0\)

NV
7 tháng 11 2021

\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)

\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)

Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho

\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)

\(\Rightarrow1< 2m< \sqrt[]{3}\)

\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)

13 tháng 8 2021

1.

a, Phương trình có nghiệm khi: 

\(\left(m+2\right)^2+m^2\ge4\)

\(\Leftrightarrow m^2+4m+4+m^2\ge4\)

\(\Leftrightarrow2m^2+4m\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)

b, Phương trình có nghiệm khi:

\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)

\(\Leftrightarrow2m^2+6m\le0\)

\(\Leftrightarrow-3\le m\le0\)

13 tháng 8 2021

2.

a, Phương trình vô nghiệm khi:

\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)

\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)

\(\Leftrightarrow4m^2-7< 0\)

\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)

b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)

\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)

 Phương trình vô nghiệm khi:

\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)

\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)

\(\Leftrightarrow m^2-1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

NV
22 tháng 12 2020

\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)

\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)

\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)

\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)

Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:

\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)

31 tháng 12 2016

uốn giải bài này nhanh bạn cần biết đến công thức

PT:a.sinx +b.cosx =c có nghiệm khi:a2+b2≥c2a2+b2≥c2

ADCT:(m−1)2+m2≥3−2m(m−1)2+m2≥3−2m

⇔m2≥1⇔m2≥1

[m≥1m≤−1