Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
a) 4 ƯC (12, 18); b) 6 ∈ ƯC (12, 18);
c) 2 ∈ ƯC (4, 6, 8); d) 4 ƯC (4, 6, 8);
e) 80 BC (20, 30); g) 60 ∈ BC (20, 30);
h) 12 BC (4, 6, 8); i) 24 ∈ BC (4, 6, 8)
Bài giải:
a) 4 ƯC (12, 18); b) 6 ∈ ƯC (12, 18);
c) 2 ∈ ƯC (4, 6, 8); d) 4 ƯC (4, 6, 8);
e) 80 BC (20, 30); g) 60 ∈ BC (20, 30);
h) 12 BC (4, 6, 8); i) 24 ∈ BC (4, 6, 8)
\(A=2.\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\right)\)
\(A=\dfrac{2}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+....+\dfrac{3}{95.98}\right)\)
\(A=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(A=\dfrac{2}{3}\dfrac{24}{49}=\dfrac{16}{49}\)
Ta có: A=\(\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}\)
\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{49}{98}-\dfrac{1}{98}\right)\)
\(\Rightarrow A=\dfrac{3}{2}.\dfrac{48}{98}\)
\(\Rightarrow A=\dfrac{3.2.2.12}{2.2.49}\)
\(\Rightarrow A=\dfrac{36}{49}\)
Hop so be nhat la 4
Ta co: 2015=4+4+4+...+4+15 (500 so 4)
Vi 4 va 15 la hop so
Vay co tat ca 501 cach viet
Tick cho minh nhe
Hợp số bé nhất là 4
> Ta có:2015=4+4+4+....+4+15( có tất cả 500 số 4)
Vì ta thấy 4 và 15 là hợp số
vậy nên suy ra ta sẽ có tất cả 501 cách viết
Tick mink nhé @Trịnh Minh Thành
Ta có : \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)
\(=9999.\overline{ab}+\overline{ab}+99.\overline{cd}+\overline{cd}+\overline{eg}\)
\(=\left(9999.\overline{ab}+99.\overline{cd}\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì : \(9999.\overline{ab}+99.\overline{cd}⋮11\) và \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)
Ta có:
\(\overline{abcdeg}=\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)
\(=\overline{ab}.11.909+\overline{cd}.11.9+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
\(=11\left(\overline{ab}.909+\overline{cd}.9\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì \(11\left(\overline{ab}.909+\overline{cd}.9\right)⋮11\) và \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
nên \(\overline{abcdeg}⋮11\)
Vậy nếu \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\) thì \(\overline{abcdeg}⋮11\) (đpcm)
Cột 1 :
- Ta có : `392 = 28.14`
`=> q = 14 ; r = 0`
Cột 2 :
- Ta có : `278 = 13.21 + 5`
`=> q = 21 ; r = 5`
Cột 3 :
- Ta có : `357 = 21.17`
`=> q = 17 ; r = 0`
Cột 4 :
`a = 25.14 + 10`
`=> a = 360`
Cột 5 :
`b = 420 : 12`
`=> b = 35`
Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)
Nhân C với \(3^2\)ta có:
\(9S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
Chứng minh:
Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)
\(\)UCLN(7;8)=1
\(\Rightarrow S⋮7\)
Sửa lại 1 chút!
Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7
1,=0 . [2017/2018+2018/2019]
=>0
2,TH1 x-3=0=>x=3
TH2 y-4=0=>y=4
3, -2/4 = -x/10 = 16/y
=>-1/2 = -x/10 = 16/y
=>-1/2 = -x/10 => -5/10 = -x/10 => x=5
-1/2 = 16/y => 16/-32 = 16/y => y = -32
Hướng dẫn