K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

A B C M N P Q R S

Gọi R,S lần lượt là điểm đối xứng với C,B qua N,P. Lấy Q' là trung điểm của RS.

Ta có: \(AR=CA-CR=CA-2.\frac{CA+CP-AP}{2}=AP-CP\)

Tương tự \(AS=AP-BP\). Vì \(BP=CP< PA\) nên \(AR=AS\)

Suy ra AQ' là trung tuyến của \(\Delta\)RAS và cũng là đường phân giác \(\widehat{BAC}\)

Mặt  khác tam giác BPC cân tại P có đường tròn nội tiếp tiếp xúc với BC tại M, suy ra M là trung điểm BC

Theo tính chất đường trung bình thì tứ giác MNQ'P là hình bình hành

Do vậy Q' trùng với Q. Mà AQ' là phân giác góc BAC nên AQ là phân giác góc BAC.

8 tháng 7 2021

Sửa cả đề và trong bài giải luôn: Thay điểm P nằm trong tam giác thành P', tránh trùng với điểm P trên cạnh AB.

15 tháng 7 2018

A B C D M

Đây là hình với cả đã chứng minh được Cm là phân giác góc BCD,bn nào giúp mik với nhé ^^~

22 tháng 2 2021

(Tự vẽ hình)

Xét \(\Delta PCD\) và \(\Delta PFE\) có:

\(\widehat{FPC}\) chung;

\(\widehat{PDC}=\widehat{PEF}\) (hai góc nội tiếp cùng chắn cung \(\stackrel\frown{CF}\))

\(\Rightarrow\Delta PCD\) đồng dạng với \(\Delta PFE\) (góc - góc)

\(\Rightarrow\dfrac{PC}{PD}=\dfrac{PF}{PE}\Rightarrow PF.PD=PC.PE\qquad\left(1\right)\)

Mặt khác ta lại có: 

\(\widehat{CEA}=\dfrac{1}{2}sđ\stackrel\frown{CA}\) (tính chất góc nội tiếp);

\(\widehat{CAP}=\dfrac{1}{2}sđ\stackrel\frown{CA}\) (tính chất góc tạo bởi tiếp tuyến và dây cung)

\(\Rightarrow\widehat{CEA}=\widehat{CAP}\)  mà \(\widehat{CPA}\) chung

\(\Rightarrow\Delta PCA\) đồng dạng với \(\Delta PAE\) (góc - góc)

\(\Rightarrow\dfrac{PC}{PA}=\dfrac{PA}{PE}\Rightarrow PC.PE=PA^2=\left(2AB\right)^2=4AB^2\qquad\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\) \(PF.PD=PC.PE=4AB^2\).

Xét ΔPAC và ΔPEA có

góc PAC=góc PEA

góc APC chung

=>ΔPAC đồng dạng với ΔPEA

=>PA/PE=PC/PA

=>PA^2=PE*PC=4*AB^2

 

a: góc DCE=1/2*sđ cung DE

góc DPE=1/2(sđ cung DE-sđ cung CF)

góc CAF=1/2*sđ cug CF)

=>góc DPE=góc DCE-góc CAF

=>góc DPE+góc CAF=góc DCE

b,c: Xét ΔBAC và ΔBDA có

góc BAC=góc BDA

góc ABC chung

=>ΔBAC đồng dạng với ΔBDA

=>BA/BD=BC/BA

=>BA^2=BD*BC=PB^2

=>BP/BC=BD/BP

=>ΔBPD đồng dạng với ΔBCP

=>góc BPC=góc BDP

=>góc BPC=góc PEF

=>EF//AP

10 tháng 4 2023

đăng hơn 1 năm trước,mà giờ mới có người trả lời :))