K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2021

\(\dfrac{-17}{15}\)

NV
22 tháng 2 2021

1.

ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)

\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)

\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2-3b^2-2ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow a=3b\)

\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)

\(\Leftrightarrow x^2-x=9\left(x+1\right)\)

\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)

NV
22 tháng 2 2021

2.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:

\(x^3+3\left(x^2-4a^2\right)a=0\)

\(\Leftrightarrow x^3+3ax^2-4a^3=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)

17 tháng 12 2020

ĐK: \(x\ge0;x\le-1\)

\(pt\Leftrightarrow x^2+x-6=\sqrt{x^2+x}-4\)

\(\Leftrightarrow x^2+x-\sqrt{x^2+x}-2=0\)

\(\Leftrightarrow\left(\sqrt{x^2+x}+1\right)\left(\sqrt{x^2+x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x}=-1\left(l\right)\\\sqrt{x^2+x}=2\end{matrix}\right.\)

\(\sqrt{x^2+x}=2\)

\(\Leftrightarrow x^2+x-4=0\)

\(\Leftrightarrow x=\dfrac{-1\pm\sqrt{17}}{2}\left(tm\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Chỗ dấu tương đương số 3 phải là dấu ngoặc (hoặc) chứ không phải và nhé bạn. Như vậy là sai về mặt bản chất. 

8 tháng 3 2022

\(\dfrac{x-2}{x+1}-\dfrac{3}{x+2}>0.\left(x\ne-1;-2\right).\\ \Leftrightarrow\dfrac{x^2-4-3x-3}{\left(x+1\right)\left(x+2\right)}>0.\\ \Leftrightarrow\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)    

Đặt \(f\left(x\right)=\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)

Ta có: \(x^2-3x-7=0.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{37}}{2}.\\x=\dfrac{3-\sqrt{37}}{2}.\end{matrix}\right.\)

          \(x+1=0.\Leftrightarrow x=-1.\\ x+2=0.\Leftrightarrow x=-2.\)

Bảng xét dấu:

undefined

\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left(-\infty-2\right)\cup\left(\dfrac{3-\sqrt{37}}{2};-1\right)\cup\left(\dfrac{3+\sqrt{37}}{2};+\infty\right).\)

\(\sqrt{x^2-3x+2}\ge3.\\ \Leftrightarrow x^2-3x+2\ge9.\\ \Leftrightarrow x^2-3x-7\ge0.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{37}}{2}.\\x=\dfrac{3+\sqrt{37}}{2}.\end{matrix}\right.\)

Đặt \(f\left(x\right)=x^2-3x-7.\)

\(f\left(x\right)=x^2-3x-7.\)

\(\Rightarrow f\left(x\right)\ge0\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)

\(\Rightarrow\sqrt{x^2-3x+2}\ge3\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)

NV
23 tháng 7 2020

ĐKXĐ: \(x\ne\left\{0;\frac{-3\pm\sqrt{13}}{2}\right\}\)

Phương trình tương đương: \(\frac{x^2+\frac{1}{x^2}-1}{x-\frac{1}{x}+3}=\frac{1}{2}\)

Đặt \(x-\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2+2\)

Pt trở thành: \(\frac{a^2+1}{a+3}=\frac{1}{2}\)

\(\Leftrightarrow2a^2+2=a+3\)

\(\Leftrightarrow2a^2-a-1=0\)

\(\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=1\\x-\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-1=0\\2x^2+x-2=0\end{matrix}\right.\) (casio)

Đặt căn x^2+5x+6=a

=>a^2=x^2+5x+6

PT sẽ là a^2-2-3a+4=0

=>a^2-3a+2=0

=>a=1 hoặc a=2

=>x^2+5x+6=1 hoặc x^2+5x+6=4

=>\(x\in\left\{\dfrac{-5+\sqrt{5}}{2};\dfrac{-5-\sqrt{5}}{2};\dfrac{-5+\sqrt{17}}{2};\dfrac{-5-\sqrt{17}}{2}\right\}\)