Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Theo tính chất của dãy tỉ số bằng nhau, có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8x+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{12}\\\dfrac{x}{6}=\dfrac{z}{12}\\\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
Kết luận ...
a ) \(7x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{7}\) và \(x-y=16\)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)
\(\Rightarrow\dfrac{x}{3}=-4\Leftrightarrow x=-12\)
\(\Rightarrow\dfrac{x}{7}=-4\Leftrightarrow x=-28\)
Vậy .................
b ) \(\dfrac{x}{2}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
\(\Leftrightarrow x=2k;y=5k\)
Mà \(x.y=10\)
\(\Rightarrow2k.5k=10\Leftrightarrow10k^2=10\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
2 TH xảy ra :
-Với k = 1 , thì :
\(\left[{}\begin{matrix}x=2.1=2\\y=5.1=5\end{matrix}\right.\)
- Với k=-1, thì :
\(\left[{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
Vậy.............
c ) \(\dfrac{x}{4}=\dfrac{y}{3}\Leftrightarrow\dfrac{2x}{8}=\dfrac{5y}{15}\) và \(2x+5y=69\)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{2x}{8}=\dfrac{5y}{15}=\dfrac{2x+5y}{8+15}=\dfrac{69}{23}=3\)
\(\Rightarrow\dfrac{2x}{8}=3\Leftrightarrow2x=24\Leftrightarrow x=12\)
\(\Rightarrow\dfrac{5y}{15}=3\Leftrightarrow5y=45\Leftrightarrow y=9\)
d ) \(5x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}\Leftrightarrow\dfrac{4x}{12}=\dfrac{3y}{15}\) và \(4x-3y=-99\)
Theo tính chất của dãy tỉ số bằng nhau , ta có :
\(\dfrac{4x}{12}=\dfrac{3y}{15}=\dfrac{4x-3y}{12-15}=\dfrac{-99}{-3}=33\)
\(\Leftrightarrow\dfrac{4x}{12}=33\Leftrightarrow4x=396\Leftrightarrow x=99\)
\(\Rightarrow\dfrac{3y}{15}=33\Leftrightarrow3y=495\Leftrightarrow y=165\)
Vậy .......
a. \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)=-12\\y=7.\left(-4\right)=-28\end{matrix}\right.\)
\(xy-3x-y=6\)
\(=>xy+3x-y-3=6-3\)
\(=>x\left(y+3\right)-\left(y+3\right)=3\)
\(=>\left(y+3\right)\left(x-1\right)=3\)
y+3 | -1 | 3 | 1 | -3 | |
x-1 | -3 | 1 | 3 | -1 |
y+3 | -1 | 3 | -3 | 1 |
y | -4 | -1 | -7 | -3 |
x-1 | -3 | 1 | 3 | -1 |
x | -2 | 2 | 4 | 0 |
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Thay vào \(2x^2+3y^2=30\) ta được:
\(2.\left(3k\right)^2+3.\left(4k\right)^2=30\)
\(\Leftrightarrow66k^2=30\)
\(\Rightarrow k^2=\dfrac{5}{11}\)
\(\Rightarrow k=\pm\dfrac{\sqrt{55}}{11}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt{55}}{11};y=\dfrac{4\sqrt{55}}{11}\\x=-\dfrac{3\sqrt{55}}{11};y=-\dfrac{4\sqrt{55}}{11}\end{matrix}\right.\)