\(\dfrac{x+1}{2}\)= \(\dfrac{y+2}{3}\) = 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2024

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{2}=\dfrac{y+2}{3}=\dfrac{z+3}{4}=\dfrac{x+1+y+2+z+3}{2+3+4}=\dfrac{21+6}{9}=\dfrac{27}{9}=3\)

=>\(\left\{{}\begin{matrix}x+1=2\cdot3=6\\y+2=3\cdot3=9\\z+3=4\cdot3=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6-1=5\\y=9-2=7\\z=12-3=9\end{matrix}\right.\)

17 tháng 11 2024

thank

 

\(\Leftrightarrow3^x\cdot9+4\cdot3^x\cdot3+3^x\cdot\dfrac{1}{3}=6^6\)

\(\Leftrightarrow3^x=6^6:\left(9+4\cdot3+\dfrac{1}{3}\right)=2187\)

hay x=7

c: \(\Leftrightarrow2^{x-1}=24-16+3-3=8\)

=>x-1=3

hay x=4

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{-3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{-2x+7y-3z}{6+28-15}=\dfrac{171}{19}=9\)

Do đó: x=-27; y=36; z=45

11 tháng 9 2019

Tính chất của dãy tỉ số bằng nhau

b: 2x^3-1=15

=>2x^3=16

=>x=2

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)

=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)

=>y-25=32; z+9=50

=>y=57; z=41

d: 3/5x=2/3y

=>9x=10y

=>x/10=y/9=k

=>x=10k; y=9k

x^2-y^2=38

=>100k^2-81k^2=38

=>19k^2=38

=>k^2=2

TH1: k=căn 2

=>\(x=10\sqrt{2};y=9\sqrt{2}\)

TH2: k=-căn 2

=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}=\dfrac{x+y+z}{10+6+21}=\dfrac{25}{37}\)

Do đó: x=250/37; y=150/37; z=525/37

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: Ta có: x/2=y/3

nên x/8=y/12(1)

Ta có: y/4=z/5

nên y/12=z/15(2)

Từ (1) và (2) suy ra x/8=y/12=z/15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

Do đó: x=16; y=24; z=30

14 tháng 12 2017

ko ai trả lời hẳn một đống cho cậu đâu chi

15 tháng 12 2017

k cần trả lời hết cũng đc

nhưng có trả lời là đc rùi

30 tháng 5 2018

Câu 1: Mình chỉnh sửa lại đầu bài của bạn nha. Không biết có đúng không. Nếu để đầu bài như bạn thì mình không làm ra được. Mog góp ý !!!!

Áp dụng t/c DTSBN ta có:

\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)

\(=\dfrac{x+y+x}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+x}{2x+2y+2z}=\dfrac{1}{2}\)

=>\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\left(1\right)\)

=>\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\left(2\right)\)

=>\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\left(3\right)\)

=> x+y+z = 1/2 (4)

Ta có : Từ (1) => 2x = y+z+1 kết hợp (4)

=> 2x = 1/2-x+1

=> 3x = 3/2 => x=1/2

Ta có: Từ (2) => 2y = x+z+1

=> 2y + y = x+y+z+1

=> 3y = 1/2+1 (theo 4) => 3y=3/2

=> y=1/2

Ta có : Từ (4) => x+y+z=1/2

=>1/2 + 1/2 +z = 1/2

=> z=-1/2

Vậy ( x;y;z)=(1/2;1/2;-1/2)

17 tháng 6 2018

a, \(\left|3x-4\right|+\left|3y+5\right|=0\)

Ta có :

\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)

\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)

b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

Ta có :

\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)

c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)

Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)

d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

Ta có :

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)

e, Câu cuối bn làm tương tự như câu a, b, c nhé!

17 tháng 6 2018

bạn ơi cho mình hỏi là chứ A viết ngược kia là gì vậy ạ?

1 tháng 1 2018

a/

Theo đề,ta có:

+/ \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)

+/\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)\(\left(2\right)\)

Từ (1) và (2), ta có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)

Do đó:

+/ \(\dfrac{x}{8}=\dfrac{28}{-19}\Rightarrow x=-\dfrac{224}{19}\)

+/\(\dfrac{y}{12}=\dfrac{28}{-19}\Rightarrow y=-\dfrac{336}{19}\)

+/\(\dfrac{z}{15}=\dfrac{28}{-19}\Rightarrow z=-\dfrac{420}{19}\)

Vậy: + \(x=-\dfrac{224}{19}\)

+ \(y=-\dfrac{336}{19}\)

+ \(z=-\dfrac{420}{19}\)

1 tháng 1 2018

a,x2=y3,y4=z5x2=y3,y4=z5và x-y-z=28

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)

=>\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất DTSBN có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)=\(\dfrac{x-y-z}{8-12-15}=\dfrac{-28}{19}\)

=> x=\(\dfrac{-224}{19}\)

y=\(\dfrac{-336}{19}\)

z=\(\dfrac{-420}{19}\)

3 tháng 12 2017

phần a

vì x/2= y/3

y/5= z/4

=>x/2 nhân 1.5 = y/3 nhân 1/5

=> y/5 nhân 1/3 = z/4 nhân 1/3

=>x/10 = y/15 (1)

=>y/15 = z/12 (2)

Từ (1) , (2) ta có :

x/10 = y/15 = z/12

áp dụng t/c......

=>x/10 = y/15 = z/12

=>x+y+z/10+15+12

=> -49/37

b lm tiếp bc tiếp theo nhé✔

Vì mk cmt đầu tiên lên b tích dùm m☢