Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk : \(x\ge0,x\ne1\)
\(=>P=\left[\dfrac{2\left(\sqrt{x}+2\right)-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]:\left[\dfrac{x+\sqrt{x}-2+3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]\)
\(P=\left[\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right].\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+1}\right]\)
\(P=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b,\(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\) thay vào P
\(=>P=\dfrac{2\sqrt{\left(\sqrt{5}-1\right)^2}-1}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}=\dfrac{2\sqrt{5}-3}{\sqrt{5}}\)
c,\(=>\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}=>2x-\sqrt{x}=\sqrt{x}+1\)
\(=>2x-2\sqrt{x}-1=0< =>2\left(x-\sqrt{x}-\dfrac{1}{2}\right)=0\)
\(=>x-\sqrt{x}-\dfrac{1}{2}=>\Delta=1-4\left(-\dfrac{1}{2}\right)=3>0=>\left[{}\begin{matrix}x1=\dfrac{1+\sqrt{3}}{2}\\x2=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)
đối chiếu đk loại x2 còn x1 thỏa
Lời giải:
Đặt $\frac{x-1}{x+2y}=a; \frac{y+1}{x-2y}=b$ thì HPT trở thành:
\(\left\{\begin{matrix}
5a+3b=8\\
20a-7b=-6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
20a+12b=32\\
20a-7b=-6\end{matrix}\right.\)
\(\Rightarrow 19b=38\Rightarrow b=2\Rightarrow a=0,4\)
Ta có:
\(\left\{\begin{matrix} a=\frac{2}{5}\\ b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x-1}{x+2y}=\frac{2}{5}\\ \frac{y+1}{x-2y}=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3x=4y+5\\ 2x=1+5y\end{matrix}\right.\)
\(\Rightarrow 2(4y+5)-3(1+5y)=0\Rightarrow y=1\)
Kéo theo $x=3$
Vậy $(x,y)=(3,1)$
1: \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{y}=3\\\left|x-1\right|=2-\dfrac{2}{y}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=2-\dfrac{2}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{2;0\right\}\end{matrix}\right.\)
2: \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\2\left|x-1\right|+\dfrac{4}{y-1}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{y-1}=-9\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=3-\dfrac{2}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{3;-1\right\}\end{matrix}\right.\)
3: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-5}+\dfrac{12}{\sqrt{y}-2}=4\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{\sqrt{y}-2}=13\\\dfrac{1}{x-5}=2-\dfrac{6}{\sqrt{y}-2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=9\\\dfrac{1}{x-5}=2-\dfrac{6}{3-2}=2-\dfrac{6}{1}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x-5=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{4}\\y=9\end{matrix}\right.\)
ĐKXĐ: x>=0; x<>1
a: \(B=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left(\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\right)\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\sqrt{x}+1}:\left[\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2\right]\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{\left(x-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
b: Khi x=4-2căn 3=(căn 3-1)^2 thì \(B=\dfrac{\sqrt{3}-1}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-1}{\sqrt{3}}=\dfrac{3-\sqrt{3}}{3}\)
c: B=2/3
=>căn x/căn x+1=2/3
=>căn x=2
=>x=4
d: \(B-1=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=-\dfrac{1}{\sqrt{x}+1}< 0\)
=>B<1
e: B>1
=>-1/căn x+1>0
=>căn x+1<0(vô lý)
=>KO có x thỏa mãn
f: B nguyên khi căn x chia hết cho căn x+1
=>căn x+1-1 chia hết cho căn x+1
=>căn x+1=1 hoặc căn x+1=-1(loại)
=>căn x=0
=>x=0
a) Ta có: \(\left(\dfrac{1}{2-\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\right):\dfrac{2}{\sqrt{7}+\sqrt{3}}\)
\(=\left(2+\sqrt{3}-\sqrt{7}-2\right):\dfrac{\left(\sqrt{7}-\sqrt{3}\right)}{2}\)
\(=\dfrac{-\left(\sqrt{7}-\sqrt{3}\right)}{1}\cdot\dfrac{2}{\sqrt{7}-\sqrt{3}}\)
=-2
b) Ta có: \(\left(\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-1\right):\left(\sqrt{x}-x\right)+\dfrac{1}{x}\)
\(=\left(-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-1\right)\cdot\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{x}\)
\(=\left(-\sqrt{x}-1\right)\cdot\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{x}\)
\(=\dfrac{x+\sqrt{x}}{x\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+2\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}\)
1. ĐKXĐ: $x>0; x\neq 9$
\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)
2. ĐKXĐ: $x\geq 0; x\neq 4$
\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)
\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)
\(\dfrac{x-1}{5}+\dfrac{x+1}{7}+\left(x-1\right)\left(x+1\right)=\left(x+1\right)^2\)
\(\Leftrightarrow\dfrac{7\left(x-1\right)+5\left(x+1\right)}{35}+x^2-1=x^2+2x+1\)
\(\Leftrightarrow\dfrac{12x-2}{35}=2x+2\)
\(\Leftrightarrow\dfrac{6x-1}{35}=x+1\)
\(\Leftrightarrow35x+35=6x-1\)
\(\Leftrightarrow x=-\dfrac{36}{29}\)