\(\dfrac{\sqrt{7-2\sqrt{6}}-2}{\sqrt{7-2\sqrt{6}}+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
28 tháng 7 2022

Xét : \(\sqrt{7-2\sqrt{6}}=\sqrt{6-2\sqrt{6}+1}\\ =\sqrt{\sqrt{6}^2-2.\sqrt{6}.1+1^2}\\ =\sqrt{\left(\sqrt{6}-1\right)^2}=\left|\sqrt{6}-1\right|=\sqrt{6}-1\)  

( Vì : \(\sqrt{6}>1=>\sqrt{6}-1>0\) )

Ta có :

\(\dfrac{\sqrt{7-2\sqrt{6}}-2}{\sqrt{7-2\sqrt{6}}+1}=\dfrac{\sqrt{6}-1-2}{\sqrt{6}-1+1}=\dfrac{\sqrt{6}-3}{\sqrt{6}}\\ =\dfrac{\sqrt{6}\left(\sqrt{6}-3\right)}{6}=\dfrac{6-3\sqrt{6}}{6}\)

bài lớp 9 ạ:>

\(\sqrt{7-2\sqrt{6}}=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)

biểu thức trên =\(\dfrac{\sqrt{6}-3}{\sqrt{6}}=1-\dfrac{3}{\sqrt{6}}=1-\dfrac{\sqrt{6}}{2}\)

a: \(=\dfrac{1}{\sqrt{6}-1+1}-\dfrac{1}{\sqrt{6}+1-1}\)

\(=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}}\)

=0

b: \(=\dfrac{3+\sqrt{7}-3+\sqrt{7}}{2}=\dfrac{2\sqrt{7}}{2}=\sqrt{7}\)

c: \(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\)

12 tháng 7 2017

\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+\sqrt{48}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2-\sqrt{3}\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-20+10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

= 5

\(\dfrac{\sqrt{3}-\sqrt{5+\sqrt{24}}+\sqrt{\sqrt{72}+11}}{\sqrt{6+\sqrt{20}}+\sqrt{2}-\sqrt{7+\sqrt{40}}}\)

\(=\dfrac{\sqrt{3}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{2}\right)^2}}{\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}\)

\(=\dfrac{\sqrt{3}-\sqrt{2}-\sqrt{3}+3+\sqrt{2}}{\sqrt{5}+1+\sqrt{2}-\sqrt{2}-\sqrt{5}}\)

\(=3\)

26 tháng 7 2018

E = \(6x+\sqrt{9x^2-12x+4}\)

E = \(6x+\sqrt{\left(3x-2\right)^2}\)

E = \(6x+\left|3x-2\right|\)

E = \(6x+3x-2\)

E = \(9x-2\)

F = \(5x-\sqrt{x^2+4x+4}\)

F = \(5x-\sqrt{\left(x+2\right)^2}\)

F = \(5x-\left|x+2\right|\)

F = \(5x-x+2\)

F = \(4x+2\)

a: Sửa đề: \(A=\sqrt{7-\sqrt{24}}+\sqrt{7+\sqrt{24}}\)

\(=\sqrt{6}-1+\sqrt{6}+1=2\sqrt{6}\)

b: \(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

11 tháng 10 2018

Mik đăng câu hỏi mà ko thấy ai trả lời hết, với lại h mik giải được rồi nên đăng lên có ai tìm bài này thì có đáp án ha ( mấy CTV đừng hiểu lầm nhé)

a) \(x^2-13x+50=4\sqrt{x-3}\)

ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow x^2-13x+50-4\sqrt{x-3}=0\)

\(\Leftrightarrow x^2-14x+x+49-3-+4-4\sqrt{x-3}=0\)

\(\Leftrightarrow(x^2-14x+49)+(x-3-4\sqrt{x-3}+4)=0\)

\(\Leftrightarrow\left(x-7\right)^2+\left(\sqrt{x-3}-2\right)^2=0\)

\(\Leftrightarrow\left(x-7\right)^2=\left(\sqrt{x-3}-2\right)^2\)

\(\Leftrightarrow x-7=-\sqrt{x-3}+2\)

\(\Leftrightarrow x-9=-\sqrt{x-3}\)

\(\Leftrightarrow x^2-18x+81=x-3\)

\(\Leftrightarrow x^2-19x+84=0\)

\(\Leftrightarrow\left(x+12\right)\left(x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-12=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy \(x\in\left\{7;12\right\}\)

11 tháng 10 2018

\(b)\dfrac{4x}{x^2-5x+6}+\dfrac{3x}{x^2-7x+6}=6\)

ĐKXĐ: \(x\ne1,2,3,6\)

Đặt \(t=x^2-6x+6\)

pt \(\Leftrightarrow\dfrac{4x}{t+x}+\dfrac{3x}{t-x}=6\)

\(\Leftrightarrow\dfrac{4x\left(t-x\right)+3x\left(t+x\right)}{\left(t+x\right)\left(t-x\right)}=6\)

\(\Leftrightarrow\dfrac{7tx-x^2}{t^2-x^2}=6\)

\(\Leftrightarrow7tx-x^2=6t^2-6x^2\)

\(\Leftrightarrow-6t^2+7xt+5x^2=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)\left(t-\dfrac{5}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\t-\dfrac{5}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2-6x+6-\dfrac{5}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2-6x+\dfrac{13}{3}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{9+\sqrt{42}}{3}\\x=\dfrac{9-\sqrt{42}}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{-1}{2};\dfrac{9\pm\sqrt{42}}{3}\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

a)

\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{100}+\sqrt{101}}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}+\sqrt{1})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{101}-\sqrt{100}}{(\sqrt{101}+\sqrt{100})(\sqrt{101}-\sqrt{100})}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{101}-\sqrt{100}}{101-100}\)

\(S=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\)

\(S=\sqrt{101}-1\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

b)

\(S=\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+...+\frac{1}{\sqrt{100}+\sqrt{102}}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{(\sqrt{4}+\sqrt{2})(\sqrt{4}-\sqrt{2})}+\frac{\sqrt{6}-\sqrt{4}}{(\sqrt{6}+\sqrt{4})(\sqrt{6}-\sqrt{4})}+...+\frac{\sqrt{102}-\sqrt{100}}{(\sqrt{102}+\sqrt{100})(\sqrt{102}-\sqrt{100})}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{4-2}+\frac{\sqrt{6}-\sqrt{4}}{6-4}+....+\frac{\sqrt{102}-\sqrt{100}}{102-100}\)

\(S=\frac{\sqrt{4}-\sqrt{2}+\sqrt{6}-\sqrt{4}+\sqrt{8}-\sqrt{6}+...+\sqrt{102}-\sqrt{100}}{2}\)

\(S=\frac{\sqrt{102}-\sqrt{2}}{2}\)