Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(\left\{{}\begin{matrix}b\ne0,m\ne0,n\ne0\\\dfrac{n}{m}\ge0\\mn\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b\ne0\\m\ne0\\n\ne0\\m,n\end{matrix}\right.\) ( bổ sung chổ m,n nha chỗ đó là m,n cùng dấu )
Khi đó \(A=\left(\dfrac{am}{b}\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}\right).a^2.b^2\sqrt{\dfrac{n}{m}}\)
\(=\dfrac{am}{b}\sqrt{\dfrac{n}{m}}.a^2.b^2.\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}.a^2.b^2.\sqrt{\dfrac{n}{m}}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}.a^2.b^2.\sqrt{\dfrac{n}{m}}\)
\(=a^3bm\sqrt{\dfrac{n^2}{m^2}}-\dfrac{a^3b^3}{n}.\sqrt{\dfrac{mn^2}{m}}+a^4.\sqrt{\dfrac{mn}{nm}}\)
\(=a^3bm.\left|\dfrac{n}{m}\right|-\dfrac{a^3b^3}{n}.\sqrt{n^2}+a^4\)
\(=a^3bm.\dfrac{n}{m}-\dfrac{a^3b^3}{n}.\left|n\right|+a^4\) ( vì m,n cùng dấu )
\(=a^3bn-\dfrac{a^3b^3}{n}.\left|n\right|+a^4\)
Nếu n > 0 thì \(A=a^3bn-\dfrac{a^3b^3}{n}.n+a^4=a^3bn-a^3b^3+a^4\)
Nếu n < 0 thì \(A=a^3bn-\dfrac{a^3b^3}{n}.\left(-n\right)+a^4=a^3bn+a^3b^3+a^4\)
Vậy \(A=a^3bn-a^3b^3+a^4\) với n > 0; \(A=a^3bn+a^3b^3+a^4\) với n < 0
Bài này mới cơ bản thôi
a: \(=ab+2\cdot\sqrt{\dfrac{b}{a}\cdot ab}-\sqrt{ab\cdot\left(\dfrac{a}{b}+\dfrac{1}{\sqrt{ab}}\right)}\)
\(=ab+2b-\sqrt{ab\cdot\dfrac{a\sqrt{a}+\sqrt{b}}{b\sqrt{a}}}\)
\(=ab+2b-\sqrt{\sqrt{a}\cdot\left(a\sqrt{a}+\sqrt{b}\right)}\)
b: \(=\left(\sqrt{\dfrac{a^2m^2\cdot n}{b^2\cdot m}}-\sqrt{mn\cdot\dfrac{a^2b^2}{n^2}}+\sqrt{\dfrac{a^4}{b^4}\cdot\dfrac{m}{n}}\right)\cdot a^2b^2\cdot\sqrt{\dfrac{n}{m}}\)
\(=\left(\dfrac{a\sqrt{mn}}{b}-\sqrt{a^2b^2\cdot\dfrac{m}{n}}+\dfrac{a^2}{b^2}\cdot\sqrt{\dfrac{m}{n}}\right)\cdot\sqrt{\dfrac{n}{m}}\cdot a^2b^2\)
\(=\left(\dfrac{an}{b}-ab+\dfrac{a^2}{b^2}\right)\cdot a^2b^2\)
\(=a^3nb-a^3b^3+a^4\)
(căn m+căn n-căn m+n)(căn m+căn n+căn m+n)
=m+n+2căn mn-m-n=2căn mn
=>ĐPCM
Xét \(n^2+1=n^2+mn+np+pm=n\left(m+n\right)+p\left(m+n\right)=\left(m+n\right)\left(n+p\right)\)
Tương tự: \(m^2+1=\left(m+n\right)\left(m+p\right)\)
\(p^2+1=\left(p+m\right)\left(p+n\right)\)
\(\Rightarrow\dfrac{\left(n^2+1\right)\left(p^2+1\right)}{m^2+1}=\dfrac{\left(n+p\right)^2\left(m+n\right)\left(m+p\right)}{\left(m+n\right)\left(m+p\right)}\)
\(=\left(n+p\right)^2\)
\(\Rightarrow\sqrt{\dfrac{\left(n^2+1\right)\left(p^2+1\right)}{m^2+1}}=n+p\)
Tương tự: \(\sqrt{\dfrac{\left(p^2+1\right)\left(m^2+1\right)}{n^2+1}}=m+p\)
\(\sqrt{\dfrac{\left(m^2+1\right)\left(n^2+1\right)}{p^2+1}}=m+n\)
\(\Rightarrow B=m\left(n+p\right)+n\left(m+p\right)+p\left(m+n\right)\)
\(=2\left(mn+np+pm\right)=2\)
Vậy B=2
a: \(=\dfrac{\sqrt{m}\left(m+4n-4\sqrt{mn}\right)}{\sqrt{mn}\left(\sqrt{m}-2\sqrt{n}\right)}\)
\(=\dfrac{1}{\sqrt{n}}\cdot\left(\sqrt{m}-2\sqrt{n}\right)\)
b: \(=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
c: \(=\sqrt{5^2\cdot2\cdot x^2y^4\cdot xy}-\dfrac{2y^2}{x^2}\cdot4\sqrt{2}\cdot x^3\sqrt{xy}+\dfrac{3}{2}xy\cdot\sqrt{2}\cdot y\cdot\sqrt{xy}\)
\(=5xy^2\sqrt{2xy}-8\sqrt{2xy}xy^2+\dfrac{3}{2}xy^2\cdot\sqrt{2xy}\)
\(=-\dfrac{3}{2}\sqrt{2xy}\)
d: \(=\left(x+2\right)\cdot\dfrac{\sqrt{2x-3}}{\sqrt{x+2}}=\sqrt{\left(2x-3\right)\left(x+2\right)}\)
đkxđ: m≠0, n ≠ 0; mn > 0; m ≠ \(\sqrt{mn}\)
\(\dfrac{m+n}{\sqrt{m}+\sqrt{n}}:\left(\dfrac{m+n}{\sqrt{mn}}+\dfrac{n}{m-\sqrt{mn}}-\dfrac{m}{n+\sqrt{mn}}\right)\)
\(=\dfrac{m+n}{\sqrt{m}+\sqrt{n}}:\left(\dfrac{m+n}{\sqrt{mn}}+\dfrac{n}{\sqrt{m}\left(\sqrt{m}-\sqrt{n}\right)}-\dfrac{m}{\sqrt{n}\left(\sqrt{m}+\sqrt{n}\right)}\right)\)
\(=\dfrac{m+n}{\sqrt{m}+\sqrt{n}}:\left[\dfrac{\left(m+n\right)\left(m-n\right)}{\sqrt{mn}\left(m-n\right)}+\dfrac{n\sqrt{n}\left(\sqrt{m}+\sqrt{n}\right)}{\sqrt{mn}\left(m-n\right)}-\dfrac{m\sqrt{m}\left(\sqrt{m}-\sqrt{n}\right)}{\sqrt{mn}\left(m-n\right)}\right]\)
\(=\dfrac{m+n}{\sqrt{m}+\sqrt{n}}:\dfrac{m^2-n^2+n\sqrt{mn}+n^2-m^2+m\sqrt{mn}}{\sqrt{mn}\left(m-n\right)}\)
\(=\dfrac{m+n}{\sqrt{m}+\sqrt{n}}:\dfrac{n\sqrt{mn}+m\sqrt{mn}}{\sqrt{mn}\left(m-n\right)}\)
\(=\dfrac{m+n}{\sqrt{m}+\sqrt{n}}\cdot\dfrac{\sqrt{mn}\left(\sqrt{m}-\sqrt{n}\right)\left(\sqrt{m}+\sqrt{n}\right)}{\sqrt{mn}\left(m+n\right)}\)
\(=\sqrt{m}-\sqrt{n}\)