Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-1\right)\left(x+2\right)}=\dfrac{-4x^2+11x-2}{\left(x+2\right)\left(x-1\right)}\)
\(\Leftrightarrow x^2+4x+4+4x^2-11x+2=0\)
\(\Leftrightarrow5x^2-7x+6=0\)
hay \(x\in\varnothing\)
c: \(\Leftrightarrow\left(3x^2+2\right)^2-5x\left(3x^2+2\right)=0\)
=>3x^2-5x+2=0
=>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
\(\dfrac{1}{x}+\dfrac{1}{x+50}=\dfrac{1}{60}\left(x\ne0;x\ne-5\right)\)
\(pt\Leftrightarrow\dfrac{x+50}{x\left(x+50\right)}+\dfrac{x}{x\left(x+50\right)}=\dfrac{1}{60}\)
\(\Leftrightarrow\dfrac{2x+50}{x\left(x+50\right)}=\dfrac{1}{60}\Leftrightarrow x\left(x+50\right)=60\left(2x+50\right)\)
\(\Leftrightarrow x^2+50x=120x+3000\)
\(\Leftrightarrow x^2-70x-3000=0\)
\(\Leftrightarrow x^2-100x+30x-3000=0\)
\(\Leftrightarrow x\left(x-100\right)+30\left(x-100\right)=0\)
\(\Leftrightarrow\left(x+30\right)\left(x-100\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+30=0\\x-100=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-30\\x=100\end{matrix}\right.\)
a: \(=\sqrt{\dfrac{1}{10}}+\sqrt{\dfrac{1}{60}}-\dfrac{2\sqrt{15}}{15}\)
\(=\dfrac{\sqrt{10}}{10}-\dfrac{2\sqrt{15}}{15}+\dfrac{\sqrt{15}}{30}\)
\(=\dfrac{3\sqrt{10}-3\sqrt{15}}{30}=\dfrac{\sqrt{10}-\sqrt{15}}{10}\)
b: \(=\dfrac{\left(\sqrt{5}+\dfrac{1}{2}\cdot2\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)}{2\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{5}+\sqrt{5}-\dfrac{1}{2}\sqrt{5}+\sqrt{5}\right)}{2\sqrt{5}}\)
\(=\dfrac{5}{2}:2=\dfrac{5}{4}\)
Bài 1 :
Câu a : \(\sqrt{\dfrac{1,44}{3,61}}=\sqrt{\dfrac{144}{361}}=\dfrac{\sqrt{144}}{\sqrt{361}}=\dfrac{12}{19}\)
Câu b : \(\sqrt{\dfrac{0,25}{9}}=\sqrt{\dfrac{25}{900}}=\dfrac{\sqrt{25}}{\sqrt{900}}=\dfrac{5}{30}=\dfrac{1}{6}\)
Câu c : \(\sqrt{1\dfrac{13}{36}}.\sqrt{3\dfrac{13}{36}}=\sqrt{\dfrac{49}{36}}.\sqrt{\dfrac{121}{46}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{121}}{36}=\dfrac{7}{6}.\dfrac{11}{6}=\dfrac{77}{36}\)
Câu d : \(\sqrt{\dfrac{1}{121}.3\dfrac{6}{25}}=\sqrt{\dfrac{1}{121}.\dfrac{81}{25}}=\dfrac{1}{\sqrt{121}}.\dfrac{\sqrt{81}}{\sqrt{25}}=\dfrac{1}{11}.\dfrac{9}{5}=\dfrac{9}{55}\)
Câu e : \(\sqrt{1\dfrac{13}{36}.2\dfrac{2}{49}.2\dfrac{7}{9}}=\sqrt{\dfrac{49}{36}.\dfrac{100}{49}.\dfrac{25}{9}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{100}}{\sqrt{49}}.\dfrac{\sqrt{25}}{\sqrt{9}}=\dfrac{7}{6}.\dfrac{10}{7}.\dfrac{5}{3}=\dfrac{25}{9}\)
Bài 2 :
Câu a : \(\dfrac{\sqrt{245}}{\sqrt{5}}=\sqrt{\dfrac{245}{5}}=\sqrt{49}=7\)
Câu b : \(\dfrac{\sqrt{3}}{\sqrt{75}}=\sqrt{\dfrac{3}{75}}=\sqrt{\dfrac{1}{25}}=\dfrac{1}{5}\)
Câu c : \(\dfrac{\sqrt{10,8}}{\sqrt{0,3}}=\sqrt{\dfrac{10,8}{0,3}}=\sqrt{\dfrac{108}{3}}=\sqrt{36}=6\)
Câu d : \(\dfrac{\sqrt{6,5}}{\sqrt{58,5}}=\sqrt{\dfrac{6,5}{58,5}}=\sqrt{\dfrac{65}{585}}=\sqrt{\dfrac{1}{9}}=\dfrac{1}{3}\)
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\dfrac{18\left(x+7-x-4\right)}{18\left(x+4\right)\left(x+7\right)}=\dfrac{\left(x+4\right)\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}\)
\(18.3=\left(x+4\right)\left(x+7\right)\)
\(x^2+11x+28-54=0\)
\(x^2+11x-26=0\)
\(\left(x-2\right)\left(x+13\right)=0\)
\(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Theo đề x < 0 nên x = -13
Lời giải:
PT (1)\(\rightarrow x_1+x_2=\frac{60.3}{4}=45\)
\(\Rightarrow x_2=45-x_1\)
Thay vào pt (2)
\(\frac{60}{x_2}-\frac{60}{x_1}=2\)
\(\Leftrightarrow \frac{60}{45-x_1}-\frac{60}{x_1}=2\)
\(\Leftrightarrow \frac{1}{45-x_1}-\frac{1}{x_1}=\frac{1}{30}\Leftrightarrow \frac{x_1-(45-x_1)}{x_1(45-x_1)}=\frac{1}{30}\)
\(\Leftrightarrow 30(2x_1-45)=x_1(45-x_1)\)
\(\Leftrightarrow x_1^2+15x_1-1350=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=30\rightarrow x_2=15\\x_1=-45\rightarrow x_2=90\end{matrix}\right.\)
(đều thỏa mãn)
Vậy \((x_1,x_2)=(30;15);(-45;90)\)
Câu 1:
\(2\sqrt{\dfrac{3}{20}}+\sqrt{\dfrac{1}{60}}-\sqrt{\dfrac{1}{15}}\)
= \(\sqrt{\dfrac{2^2\cdot3}{20}}+\sqrt{\dfrac{1}{60}}-\sqrt{\dfrac{1}{15}}\)
= \(\sqrt{\dfrac{12}{20}}+\sqrt{\dfrac{1}{60}}-\sqrt{\dfrac{1}{15}}\)
= \(\dfrac{\sqrt{12}\cdot\sqrt{20}}{\left(\sqrt{20}\right)^2}+\dfrac{\sqrt{60}}{\left(\sqrt{60}\right)^2}-\dfrac{\sqrt{15}}{\left(\sqrt{15}\right)^2}\)
= \(\dfrac{\sqrt{240}}{20}+\dfrac{\sqrt{60}}{60}-\dfrac{\sqrt{15}}{15}\)
= \(\dfrac{\sqrt{15}}{5}+\dfrac{\sqrt{15}}{30}-\dfrac{\sqrt{15}}{15}\)
= \(\sqrt{15}\cdot\left(\dfrac{1}{5}+\dfrac{1}{30}-\dfrac{1}{15}\right)\)
= \(\sqrt{15}\cdot\dfrac{1}{6}\) = \(\dfrac{\sqrt{15}}{6}\)
Bài 2:
a)\(\dfrac{1}{\sqrt{18}+\sqrt{8}-2\sqrt{2}}=\dfrac{1}{\sqrt{18}+2\sqrt{2}-2\sqrt{2}}=\dfrac{1}{\sqrt{18}}=\dfrac{\sqrt{18}}{18}=\dfrac{\sqrt{2}}{6}\)
b)\(\dfrac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\dfrac{\sqrt{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}\right)^2-3}=\dfrac{\sqrt{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)}{1+2\sqrt{2}+2-3}=\dfrac{\sqrt{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)}{2\sqrt{2}}=\dfrac{1}{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)\)c) \(\dfrac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{3+2\sqrt{6}+2-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}}=\dfrac{\sqrt{6}\cdot\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}{2\left(\sqrt{6}\right)^2}=\dfrac{\sqrt{6}}{12}\cdot\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\)
\(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-\sqrt{\dfrac{126}{14}}+\sqrt{\dfrac{60}{7-x}}-\sqrt{\dfrac{45}{5}}=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-\dfrac{126}{14}}{\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{126}{14}}}+\dfrac{\dfrac{60}{7-x}-\dfrac{45}{5}}{\sqrt{\dfrac{60}{7-x}}+\sqrt{\dfrac{45}{5}}}=0\)
\(\Leftrightarrow\dfrac{\dfrac{-3\left(3x-1\right)}{x-5}}{\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{126}{14}}}+\dfrac{\dfrac{-3\left(3x-1\right)}{x-7}}{\sqrt{\dfrac{60}{7-x}}+\sqrt{\dfrac{45}{5}}}=0\)
\(\Leftrightarrow-3\left(3x-1\right)\left(\dfrac{\dfrac{1}{x-5}}{\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{126}{14}}}+\dfrac{\dfrac{1}{x-7}}{\sqrt{\dfrac{60}{7-x}}+\sqrt{\dfrac{45}{5}}}\right)=0\)
Dễ thấy: \(\dfrac{\dfrac{1}{x-5}}{\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{126}{14}}}+\dfrac{\dfrac{1}{x-7}}{\sqrt{\dfrac{60}{7-x}}+\sqrt{\dfrac{45}{5}}}>0\)
\(\Rightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)
gì mà kiểu khủng bố thê nhỉ
(rất may x =1/3 là nghiệm)
\(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\) (1)
đk: \(\left\{{}\begin{matrix}\dfrac{42}{5-x}\ge0\\\dfrac{60}{7-x}\ge0\end{matrix}\right.\) \(\Rightarrow x< 5\)
\(\left(1\right)\Leftrightarrow\left[\sqrt{\dfrac{42}{5-x}}-3\right]+\left[\sqrt{\dfrac{60}{7-x}}-3\right]=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{42}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{-3+9x}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{-3+9x}{\left(7-x\right)\left(\sqrt{\dfrac{42}{7-x}}+3\right)}=0\)-3+9x =0 => x =1/3 thỏa mãn
x khác 1/3 <=>
\(\Leftrightarrow\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{42}{7-x}}+3\right)}=0\left(2\right)\\\)với đk x< 5 (2) vô nghiệm
kết luận x =1/3 là duy nhất
\(\dfrac{60}{x}-\dfrac{60}{x+2}=\dfrac{1}{20}\left(đk:x\ne0,x\ne-2\right)\)
\(\Leftrightarrow\dfrac{60x+120-60x}{x\left(x+2\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{120}{x^2+2x}=\dfrac{1}{20}\Leftrightarrow x^2+2x=2400\)
\(\Leftrightarrow\left(x+1\right)^2=2401\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=49\\x+1=-49\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=48\\x=-50\end{matrix}\right.\)(thỏa đk)
Ta có: \(\dfrac{60}{x}-\dfrac{60}{x+2}=\dfrac{1}{20}\)
\(\Leftrightarrow x\left(x+2\right)=1200x+2400-1200x\)
\(\Leftrightarrow x^2+2x-2400=0\)
\(\Delta=2^2-4\cdot1\cdot\left(-2400\right)=9604\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-2-98}{2}=-50\left(nhận\right)\\x_2=\dfrac{-2+98}{2}=48\left(nhận\right)\end{matrix}\right.\)