K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2022

\(\dfrac{45^4.5^5}{27^3.25^4}=\dfrac{9^4.5^4.5^5}{3^9.5^8}=\dfrac{3^8.5^9}{3^9.5^8}=\dfrac{5}{3}\)

13 tháng 7 2022

\(\dfrac{45^{4^{ }}.5^5}{27^3.25^4}\) = \(\dfrac{9^4.5^4.5^5}{^{ }9^{3^{ }}.3^3.5^{4^{ }}.5^4}\)\(\dfrac{9.5}{3^3}\)=\(\dfrac{5}{3}\)

22 tháng 7 2023

a) \(\dfrac{27^3\cdot11+9^5\cdot5}{3^9\cdot2^4}\)

\(=\dfrac{3^9\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)

\(=\dfrac{3^9\cdot\left(11+3\cdot5\right)}{3^9\cdot2^4}\)

\(=\dfrac{11+15}{16}\)

\(=\dfrac{26}{16}\)

\(=\dfrac{13}{8}\)

b) \(\dfrac{5^8+2^2\cdot25^4+2^3\cdot125^3-15^4\cdot5^4}{4^2\cdot625^2}\)

\(=\dfrac{5^8+2^2\cdot5^8+2^3\cdot5^9-3^4\cdot5^4\cdot5^4}{2^4\cdot5^8}\)

\(=\dfrac{5^8\cdot\left(1+2^2+2^3\cdot5-3^4\right)}{5^8\cdot2^4}\)

\(=\dfrac{1+4+40-81}{16}\)

\(=\dfrac{-36}{16}\)

\(=\dfrac{-9}{4}\)

c) \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)

\(=\dfrac{-2}{6}\)

\(=-\dfrac{1}{3}\)

14 tháng 12 2023

Ai giúp mình làm bước tiếp theo với ạ loading...  

4 tháng 1 2022

\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{\left(3^2\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot5^2\right)^{15}}=\dfrac{3^{20}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot5^{30}}=3^5=243\\ \dfrac{6^6+6^3+3^3+3^6}{-73}=\dfrac{46656+216+27+729}{-73}=-\dfrac{47628}{73}\\ \dfrac{27^7+3^{15}}{9^9-27}=\dfrac{\left(3^3\right)^7+3^{15}}{\left(3^2\right)^9-3^3}=\dfrac{3^{21}+3^{15}}{3^{18}-3^3}=\dfrac{3^{15}\left(3^6+1\right)}{3^3\left(3^{15}-1\right)}=\dfrac{3^5\cdot730}{3^{15}-1}\\ \dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)

26 tháng 7 2023

\(a.\dfrac{-4}{7}-\dfrac{5}{13}\times\dfrac{-39}{25}+\dfrac{-1}{42}:\dfrac{-5}{6}\) 

\(=\dfrac{-4}{7}+\dfrac{3}{5}+\dfrac{1}{35}\) \(=\dfrac{1}{35}+\dfrac{1}{35}=\dfrac{2}{35}\) 

\(b.\dfrac{2}{9}\times\left[\dfrac{4}{5}:\left(\dfrac{1}{5}-\dfrac{2}{15}\right)+1\dfrac{2}{3}\right]-\dfrac{-5}{27}\) 

\(=\dfrac{2}{9}\times\left[\dfrac{4}{5}:\dfrac{1}{15}+\dfrac{5}{3}\right]-\dfrac{-5}{27}\) 

\(=\dfrac{2}{9}\times\left(12+\dfrac{5}{3}\right)-\dfrac{-5}{27}\) 

\(=\dfrac{2}{9}\times\dfrac{41}{3}-\dfrac{-5}{27}=\dfrac{82}{27}-\dfrac{-5}{27}=\dfrac{29}{9}\)

6 tháng 10 2023

-3^7.2^8/2^.3^7

=-3.2

=-6

5^3.3^5/5^3(0,5+2,5)

=5^3.3^5/5^3.3\

3^4

=81

5.7^4+7^3.25/7^5.125-7^3.50

=5.7^3(7+5

6 tháng 10 2023

5.7^4+7^3.25/7^5.125-7^3.50

=5.7^4+7^3.5^2/7^5.5^3-7^3.11.5

=5.7^3(1.7+1.5)/7^3.5(7^2.25-11)

12/1250

11 tháng 11 2021

undefined

11 tháng 11 2021

Mai nộp rồi giúp với

10 tháng 8 2023

\(\dfrac{3^6.45^4-15^{13}.5^{-9}}{27^4.25^3+45^6}=\dfrac{3^6.3^85^4-3^{13}.5^{13}.5^{-9}}{3^{12}.5^6+3^{12}.5^6}\)

\(=\dfrac{3^{14}.5^4-3^{13}.5^4}{2.3^{12}.5^6}=\dfrac{3^{13}.5^4\left(3-1\right)}{2.3^{12}.5^6}\)

\(=\dfrac{3.2}{2.5^2}=\dfrac{3}{25}\)

13 tháng 9 2021

\(a,=\dfrac{3^6\cdot5^4\cdot9^4-5^{13}\cdot3^{13}\cdot5^{-9}}{3^{12}\cdot5^6+9^6\cdot5^6}=\dfrac{3^{14}\cdot5^4-5^4\cdot3^{13}}{3^{12}\cdot5^6+3^{12}\cdot5^6}\\ =\dfrac{3^{13}\cdot5^4\cdot2}{2\cdot3^{12}\cdot5^6}=\dfrac{3}{5^2}=\dfrac{3}{25}\)

13 tháng 9 2021

\(b,=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}\cdot\dfrac{16}{3}\right)^3}{2^7\cdot5^2+2^9}=\dfrac{2^7+12^3}{2^7\left(5^2+2^2\right)}=\dfrac{2^7+4^3\cdot3^3}{2^7\cdot29}=\dfrac{2^6\left(2+3^3\right)}{2^7\cdot29}=\dfrac{1}{2}\)

18 tháng 9 2021

\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{49\cdot50}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{49}+\dfrac{1}{50}\)