Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x-\frac{1}{2}\right)\left(1+5x\right)=0\)
=> \(\left[{}\begin{matrix}x-\frac{1}{2}=0\\1+5x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{5}\end{matrix}\right.\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{\frac{1}{2};-\frac{1}{5}\right\}\)
a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)
áp dụng tính chất dãy tỉ số = nhau
\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)
\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)
\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)
\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)
b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)
có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)
\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)
áp dụng t/c dãy tỉ số = nhau
\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)
\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)
\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)
\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)
c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)
thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(=>y=2\)
\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)
d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)
thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)
\(=>x=\dfrac{2.3}{3}=2\)
c, từ đoạn này á
\(\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(< =>\dfrac{y^3}{8}+\dfrac{8y^3}{8}+\dfrac{27y^3}{8}=36\)
\(=>\dfrac{36y^3}{8}=36=>36y^3=8.36=>y^3=8=>y=2\)
a. \(\frac{3}{4}x-\frac{4}{5}.x=\frac{-2}{3}\)
\(\left(\frac{3}{4}-\frac{4}{5}\right)\) \(.x\) = \(\frac{-2}{3}\)
\(\frac{-1}{20}.x=\frac{-2}{3}\)
\(x=\frac{-2}{3}:\frac{-1}{20}\)
f(x)=9x3-1/3x+3x2-3x+1/3x2-1/9x3-3x2-9x+27+3x
= 9x3-1/9x3+3x2+1/3x2-3x2-1/3-3x-9x+3x+27
= 80/9x3+1/3x2-28/3x+27
\(A=x+\dfrac{1}{x-2}\\ \Rightarrow A=x-2+\dfrac{1}{x-2}+2\)
Áp dụng BĐT Cô-si ta có:
\(A=x-2+\dfrac{1}{x-2}+2\\ \ge2\sqrt{\left(x-2\right).\dfrac{1}{x-2}}+2\\ =2\sqrt{1}+2\\ =4\)
\(\text{Dấu "=" xảy ra}\Leftrightarrow x-2=\dfrac{1}{x-2}\\ \Leftrightarrow\left(x-2\right)^2=1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)
Vậy \(A_{min}=4\Leftrightarrow x=3\)
\(A=x-2+\dfrac{1}{x-2}+2\ge2+2=4\)
Dấu '=' xảy ra khi x-2=1 hoặc x-2=-1
=>x=3 hoặc x=1
bài này còn phải sử dụng kiến thức lớp 8 đấy bn ạ
Bài 1:
a, Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|x-3\right|+\left|x-5\right|=\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=\left|2\right|=2\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-3\ge0\\5-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\)
Vậy \(MIN_A=2\) khi \(3\le x\le5\)
b, Ta có: \(\left\{{}\begin{matrix}\left|y^2-25\right|\ge0\\\left|x^2-4\right|\ge0\end{matrix}\right.\Rightarrow\left|y^2-25\right|+\left|x^2-4\right|\ge0\)
\(\Rightarrow B\ge3\)
Dấu " = " khi \(\left\{{}\begin{matrix}y^2-25=0\\x^2-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=\pm5\\x=\pm2\end{matrix}\right.\)
Vậy \(MIN_B=2\) khi \(\left\{{}\begin{matrix}x=\pm2\\y=\pm5\end{matrix}\right.\)
Bài 2:
a, Xét \(x\ge-2\) có:
\(A=3x-3x-6-12=-18\)
+) Xét x < -2 có:
\(A=3x+3x+6-12=6x-6\)
Vậy...
b, tương tự
=> 2 + 3x = x - 2
=> 2 + 2 = x - 3x
=> 4 = -2x
=> x = -2
Cảm ơn bạn