K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\left(\dfrac{2\left(2a+b\right)-6b-4\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right):\dfrac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)

\(=\dfrac{4a+2b-6b-8a+4b}{8a^2}\)

\(=\dfrac{-4a}{8a^2}=\dfrac{-1}{2a}\)

\(=\left(\dfrac{2}{2a-b}-\dfrac{6b}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{4}{2a+b}\right):\dfrac{4a^2-b^2+4a^2+b^2}{4a^2-b^2}\)

\(=\dfrac{4a+2b-6b-8a+4b}{\left(2a-b\right)\left(2a+b\right)}\cdot\dfrac{\left(2a-b\right)\left(2a+b\right)}{8a^2}\)

\(=\dfrac{-4a}{8a^2}=\dfrac{-1}{2a}\)

23 tháng 12 2022

2.

\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)

ĐKXĐ là :

\(a\ne0;-3;-2\)

Vs a = 1 ta có:

=> P=3

1.

\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)

15 tháng 7 2017

cái này chỉ rút rọn được thôi

\(A=\dfrac{4a+2b-6b-8a+4b}{\left(2a-b\right)\left(2a+b\right)}:\dfrac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)

\(=\dfrac{-4a}{\left(2a-b\right)\left(2a+b\right)}\cdot\dfrac{\left(2a-b\right)\left(2a+b\right)}{8a^2}=\dfrac{-1}{2a}\)

\(B=\left(\dfrac{a}{\left(a-4\right)\left(a+4\right)}-\dfrac{a-4}{a\left(a+4\right)}\right):\dfrac{2a-4}{a\left(a+4\right)}-\dfrac{a}{a-4}\)

\(=\dfrac{a^2-\left(a-4\right)^2}{a\left(a-4\right)\left(a+4\right)}\cdot\dfrac{a\left(a+4\right)}{2\left(a-2\right)}-\dfrac{a}{a-4}\)

\(=\dfrac{a^2-a^2+8a-16}{a-4}\cdot\dfrac{1}{2\left(a-2\right)}-\dfrac{a}{a-4}\)

\(=\dfrac{8\left(a-2\right)}{2\left(a-2\right)}\cdot\dfrac{1}{a-4}-\dfrac{a}{a-4}\)

\(=\dfrac{4}{a-4}-\dfrac{a}{a-4}=-1\)

\(A=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{\left(2a-1\right)^2}{2a+1}\cdot\dfrac{1}{\left(2a-1\right)\left(2a+1\right)}\right)\cdot\left(\dfrac{4a\left(a+1\right)+1}{4a^2}\right)-\dfrac{1}{2a}\)

\(=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{2a-1}{\left(2a+1\right)^2}\right)\cdot\dfrac{4a^2+4a+1}{4a^2}-\dfrac{1}{2a}\)

\(=\dfrac{-\left(2a-1\right)\left(2a+1\right)}{\left(2a+1\right)^2}\cdot\dfrac{\left(2a+1\right)^2}{4a^2}-\dfrac{1}{2a}\)

\(=\dfrac{-\left(4a^2-1\right)}{4a^2}-\dfrac{2a}{4a^2}\)

\(=\dfrac{-4a^2-2a+1}{4a^2}\)

15 tháng 6 2018

Có an x ak bạn